

AUSTRALIAN GROUP ON ANTIMICROBIAL RESISTANCE

# Gram-negative Surveillance Outcome Program (GnSOP)

**Blood stream infection report** 

2022

(Final report)

July 2023 Updated 05 October 2023)

## Contents

| Key  | findings   |                                                                | iii |
|------|------------|----------------------------------------------------------------|-----|
| 1.   | Backgro    | und and objectives                                             | 1   |
|      | 1.1.       | Gram-negative Surveillance Outcome Program                     | 3   |
| 2.   | Summar     | y of methods                                                   | 4   |
|      | 2.1.       | Data fields                                                    | 4   |
|      | 2.2.       | Species identification                                         | 4   |
|      | 2.3.       | Susceptibility testing                                         | 5   |
|      | 2.4.       | Whole genome sequencing                                        | 5   |
|      | 2.5.       | Statistical analysis                                           | 5   |
| 3.   | Results    |                                                                | 6   |
|      | 3.1.       | Isolates recovered                                             | 6   |
|      | 3.2.       | Place of onset of bacteraemia                                  | 8   |
|      | 3.3.       | Onset versus 30-day all-cause mortality                        | . 9 |
|      | 3.4.       | Patient age and sex                                            | 10  |
|      | 3.5.       | Principal clinical manifestations                              | 11  |
|      | 3.6.       | Length of hospital stay following bacteraemic episode          | 12  |
|      | 3.7.       | Susceptibility testing results                                 | 13  |
|      | 3.8.       | Multi-drug resistance                                          | 22  |
|      | 3.9.       | Whole genome sequencing                                        | 27  |
|      | 3.9.1.     | $Extended\-spectrum\ \beta\-lactamases$                        | 27  |
|      | 3.9.2.     | $Plasmid-borne \ AmpC \ \beta-lactamases$                      | 34  |
|      | 3.9.3.     | Carbapenem resistance                                          | 35  |
|      | 3.9.4.     | Fluoroquinolone resistance                                     | 37  |
|      | 3.9.5.     | Plasmid-mediated colistin determinants                         | 43  |
|      | 3.9.6.     | Ribosomal methyltransferases                                   | 43  |
|      | 3.10.      | Trend analysis (2013–2022)                                     | 44  |
| 4.   | Internati  | onal comparisons                                               | 55  |
| 5.   | Limitatio  | ns of the study                                                | 59  |
| 6.   | Discuss    | ion and conclusions                                            | 59  |
| Abb  | reviations | 5                                                              | 61  |
| Ack  | nowledge   | ements                                                         | 62  |
| Refe | erences.   |                                                                | 64  |
| Арр  | endix A.   | Study design                                                   | 67  |
| Арр  | endix B.   | Methods                                                        | 68  |
| Арр  | endix C.   | Susceptibility to antimicrobial agents                         | 72  |
| Арр  | endix D.   | Multiple acquired resistance by species and state or territory | 84  |

# **Key findings**

- From 1 January 2022 to 31 December 2022, a total of 9,739 episodes of gram-negative bacteraemia were reported, mostly *Enterobacterales* (90.1%), with some *Pseudomonas aeruginosa* (8.6%) and *Acinetobacter* (1.3%). Of the *Enterobacterales*, three genera *Escherichia* (60.1%), *Klebsiella* (20.9%) and *Enterobacter* (5.7%) contributed 86.7% of all *Enterobacterales* bacteraemias.
- The all-cause 30-day mortality rate for gram-negative bacteraemia was 13.0% (12.5% for *Enterobacterales*, 18.4% for *P. aeruginosa*, and 13.0% for *Acinetobacter* species).
- Urinary tract infection was the most frequent source of sepsis or clinical manifestation (*Enterobacterales* 45.1%; *P. aeruginosa* 29.8%). For *Enterobacterales*, device related urinary tract infections were more common with hospital-onset (HO) than community-onset (CO) episodes (23.6% versus 9.4%, *P* < 0.01).</li>
- Of *E. coli* isolates causing CO bacteraemia, which accounted for 82.5% of all *E. coli* bacteraemia cases, 12.1% were ceftriaxone resistant.
- In 2022, 14.4% of *E. coli* (CO 13.8%, HO 17.2%) and 7.5% of *Klebsiella pneumoniae* complex isolates (CO 5.3%, HO 12.7%) resistant to extended-spectrum β-lactams (ESBL phenotype).
- Fluoroquinolone resistance in *E. coli* increased to 13.7% in 2022 (2021 12.3%, up 11.1%), most notably in New South Wales (16.4%, up from 12.1% in 2021) and South Australia (14.6%, up from 8.5% in 2021).
- Fluoroquinolone resistance is commonly linked to cephalosporin resistance caused by ESBLs of the CTX-M type. A little over two-thirds (255/358, 71.2%) of *E. coli* that were ciprofloxacin resistant and had confirmed β-lactamase gene(s) belonged to ST131 (198, 55.3%) or ST1193 (*n* = 57, 15.9%).
- Rates of carbapenemase-producing *Enterobacterales* (CPE) in bacteraemic isolates remain low (0.3% overall, mostly carrying *bla*<sub>IMP-4</sub>). For *Enterobacter cloacae* complex the figure is higher at 2.1% overall (CO 0.8%, HO 3.5%).
- *mcr-9* or *mcr-10* were the only *mcr* genes detected. Half (8/18, 50.0%) were not linked to other resistance mechanisms.
- The impact of COVID-19 on the reduction in antimicrobial resistance in 2021 remains unclear, as a number of contributing factors may be involved.

## **1.Background and objectives**

This seventh report on the Gram-negative Surveillance Outcome Programs operated by the Australian Group on Antimicrobial Resistance (AGAR) presents analyses of antimicrobial resistance (AMR) associated with episodes of bacteraemia (blood stream infection) reported by 55 participating Australian public and private laboratories across Australia in 2022.

AGAR currently focuses on bloodstream infections and has three major programs: the Gramnegative Surveillance Outcome Program (GnSOP), the Australian Enterococcal Surveillance Outcome Program (AESOP) and the Australian Staphylococcal Surveillance Outcome Program (ASSOP). AGAR's focus on bacteraemia allows examination of laboratory-confirmed, invasive infections and comparison of rates over time for hospitals, states and territories. AGAR compares Australian data with the European Antimicrobial Resistance Surveillance Network, enabling benchmarking and trend projections. AGAR has collected ongoing data on the prevalence of antimicrobial resistance in Australia over a long period using standardised methods.

The 55 hospitals across Australia that currently contribute to AGAR, including six private institutions, are listed in Table 1. In 2022, one hospital from Queensland was only able to participate for Quarter one, and three additional hospitals from New South Wales (n = 2) and Queensland (n = 1) contributed data.

AGAR publishes detailed annual reports on each program on its <u>website</u> (<u>www.agargroup.org.au</u>), and also in the Communicable Diseases Intelligence (<u>CDI</u>) journal.

#### Table 1: Hospitals that contributed to AGAR, by state and territory, AGAR, 2022

| State or territory           | Hospital                                                                                                                                                                                               |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New South Wales              | Children's Hospital Westmead                                                                                                                                                                           |
|                              | Concord Repatriation General Hospital                                                                                                                                                                  |
|                              | Gosford Hospital                                                                                                                                                                                       |
|                              | John Hunter Hospital                                                                                                                                                                                   |
|                              | Liverpool Hospital                                                                                                                                                                                     |
|                              | Nepean Hospital                                                                                                                                                                                        |
|                              | Prince of Wales Hospital                                                                                                                                                                               |
|                              | Royal North Shore Hospital                                                                                                                                                                             |
|                              | Royal Prince Alfred Hospital                                                                                                                                                                           |
|                              | St Vincent's Hospital, Sydney*                                                                                                                                                                         |
|                              | Sydney Children's Hospital                                                                                                                                                                             |
|                              | Westmead Hospital                                                                                                                                                                                      |
|                              | Wollongong Hospital                                                                                                                                                                                    |
| Victoria                     | Alfred Hospital                                                                                                                                                                                        |
|                              | Austin Hospital (Austin Health)                                                                                                                                                                        |
|                              | Monash Children's Hospital <sup>†</sup>                                                                                                                                                                |
|                              | Monash Medical Centre (Dandenong Hospital) <sup>†</sup>                                                                                                                                                |
|                              | Monash Medical Centre (Monash Health)                                                                                                                                                                  |
|                              | Royal Melbourne Hospital                                                                                                                                                                               |
|                              | Royal Women's and Children's Hospital                                                                                                                                                                  |
|                              | St Vincent's Hospital*                                                                                                                                                                                 |
| Queensland                   | Gold Coast Hospital                                                                                                                                                                                    |
|                              | Mater Private Hospital Townsville <sup>§, #</sup>                                                                                                                                                      |
|                              | Prince Charles Hospital**                                                                                                                                                                              |
|                              | Princess Alexandra Hospital**                                                                                                                                                                          |
|                              | Queensland Children's Hospital**                                                                                                                                                                       |
|                              | Royal Brisbane and Women's Hospital                                                                                                                                                                    |
|                              | Greenslopes Private Hospital <sup>§,#</sup>                                                                                                                                                            |
| South Australia              | Flinders Medical Centre                                                                                                                                                                                |
|                              | Royal Adelaide Hospital                                                                                                                                                                                |
|                              | Women's and Children's Hospital <sup>††</sup>                                                                                                                                                          |
| Western Australia            | Fiona Stanley Hospital                                                                                                                                                                                 |
|                              | Joondalup Hospital*                                                                                                                                                                                    |
|                              | North-west regional Western Australia (Broome, Derby, Fitzroy Crossing, Halls<br>Creek, Karratha, Kununurra, Newman, Onslow, Paraburdoo, Port Hedland,<br>Roebourne, Tom Price, Wyndham) <sup>§§</sup> |
|                              | Perth Children's Hospital <sup>§§</sup>                                                                                                                                                                |
|                              | Royal Perth Hospital <sup>##</sup>                                                                                                                                                                     |
|                              | Sir Charles Gairdner Hospital                                                                                                                                                                          |
|                              | St John of God Hospital, Murdoch <sup>#</sup>                                                                                                                                                          |
| Tasmania                     | Launceston General Hospital                                                                                                                                                                            |
|                              | Royal Hobart Hospital                                                                                                                                                                                  |
| Northern Territory           | Alice Springs Hospital                                                                                                                                                                                 |
| - ,                          | Royal Darwin Hospital                                                                                                                                                                                  |
| Australian Capital Territory | Canberra Hospital                                                                                                                                                                                      |

\*

Public/Private hospital Microbiology services provided by Monash Medical Centre (Monash Health) Microbiology services provided by Sullivan Nicolaides Pathology Private hospital t

§

#

- \*\* Microbiology services provided by Pathology Queensland Central Laboratory
- <sup>++</sup> Microbiology services provided by SA Pathology, Royal Adelaide Hospital
- Microbiology services provided by PathWest Laboratory Medicine WA, Queen Elizabeth II Medical Centre
- <sup>##</sup> Microbiology services provided by PathWest Laboratory Medicine WA, Fiona Stanley Hospital

Note: In 2022, the Prince Alfred Hospital (NSW) and Queensland Childrens Hospital recommenced the survey. Gosford Hospital (NSW), Prince of Wales Hospital (NSW), and the Mater Private Hospital Townsville (Qld) participated for the first time.

#### **1.1. Gram-negative Surveillance Outcome Program**

AGAR began surveillance of the key gram-negative pathogens *E. coli* and *Klebsiella* species in 1992. Surveys were conducted every two years until 2008, when annual surveys commenced, alternating between community-onset (CO) and hospital-onset (HO) infections.

*E. coli* is the most common cause of CO urinary tract infections, whereas *Klebsiella* species are less common but are known to harbour important resistance mechanisms. In 2004, another genus of gram-negative pathogens in which resistance can be of clinical importance – *Enterobacter* – was added. *Enterobacter* species are less common in the community, but of high importance because of their intrinsic resistance to first-line antimicrobials used in this setting. Taken together, the three groups of species surveyed are valuable sentinels for multidrug resistance and emerging resistance in enteric gram-negative bacilli. In 2013, AGAR initiated the yearly *Enterobacterales* Sepsis Outcome Program (EnSOP), which focused on the prospective collection of resistance and demographic data on all isolates from patients with documented bacteraemia. In 2015, *Pseudomonas aeruginosa* and *Acinetobacter* species were added, and the program evolved into the Gram-negative Sepsis Outcome Program (GnSOP), since renamed the Gram-negative Surveillance Outcome Program. The term "Sepsis" in the program was changed in 2021 to "Surveillance" to better reflect AGAR's surveillance of episodes of bacteraemia rather than sepsis.

Resistance to  $\beta$ -lactams due to  $\beta$ -lactamases is of particular interest, especially extendedspectrum  $\beta$ -lactamases (ESBLs), which inactivate the third-generation cephalosporins. Other resistances of interest are to agents that are important for treatment of these serious infections, such as gentamicin and ciprofloxacin, and to reserve agents such as meropenem.

The objectives of the 2022 surveillance program were to:

- Monitor resistance in *Enterobacterales*, *P. aeruginosa* and *Acinetobacter* species isolated from blood cultures taken from patients presenting to the hospital or already in hospital.
- Study the extent of co-resistance and multidrug resistance in the major species.
- Detect emerging resistance to reserve agents such as carbapenems and colistin.
- Examine the molecular basis of resistance to third-generation cephalosporins, quinolones and carbapenems.

# 2.Summary of methods

Fifty-five hospitals, covering state and territory of Australia, were enrolled in the 2022 AGAR programs. The 33 laboratories servicing the hospitals participating in AGAR collected all isolates from unique patient episodes of bacteraemia for ASSOP and AESOP, and either all or up to 200 isolates for GnSOP, from 1 January 2022 to 31 December 2022. Approval to conduct the prospective data collection, including de-identified demographic data, was given by the research ethics committees associated with each participating hospital.

In patients with more than one isolate, a new episode was defined as a new positive blood culture more than two weeks after the initial positive culture. An episode was defined as community onset (CO) if the first positive blood culture was collected 48 h or less after admission, and as hospital onset (HO) if collected more than 48 h after admission.

AGAR meets the data security requirements of the Antimicrobial Use and Resistance in Australia (AURA) Surveillance System. These arrangements ensure that data conform to appropriate standards of data management and quality, and that data are used in accordance with appropriate approvals. The Australian Society for Antimicrobials (ASA), as data custodian for AGAR data, is responsible for:

- Approving access to, and use of, AGAR data.
- Ensuring that AGAR data are protected from unauthorised access, alteration or loss.
- Ensuring compliance with relevant legislation and policies regarding administration, quality assurance, and data access and release.

#### 2.1. Data fields

Laboratory data collected for each episode included an accession number, the date of collection, the organism isolated (genus and species), and the antimicrobial susceptibility test results (minimum inhibitory concentrations) for each species. The patient's date of birth, sex and postcode of residence were also provided. If the patient was admitted to hospital, the dates of admission and discharge were recorded. Depending on the level of participation in AGAR, limited clinical and outcome data were also provided. These included the principal clinical manifestation, device related infection (yes or no), and the outcome (died, all-cause or survived) at seven and 30 days (see Appendix A).

### 2.2. Species identification

Isolates were identified to species level, if possible, by the routine method used at each institution, either the Vitek® or BD Phoenix<sup>™</sup> automated Microbiology systems, and if available, matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (Bruker MALDI biotyper® or Vitek® MS).

For this report, the following speciescomplexes are defined:

- Acinetobacter baumannii complex comprises A. calcoaceticus, A. baumannii, A. dijkshoorniae, A. nosocomialis, A. pittii, and A. seifertii
- Enterobacter cloacae complex comprises E. cloacae, E. asburiae, E. bugandensis, E. kobei, E. ludwigii, E. hormaechei and E. nimipressuralis
- Klebsiella pneumoniae complex comprises K. pneumoniae, K. quasipneumoniae and K. variicola
- Citrobacter freundii complex comprises C. freundii, C. braakii, C. gillenii, C. murliniae, C. rodenticum, C. sedlakii, C. werkmanii and C. youngae.

#### Klebsiella aerogenes was previously known as Enterobacter aerogenes.

## 2.3. Susceptibility testing

Susceptibility testing of isolates is described in Appendix B. The analysis used breakpoints from the Clinical and Laboratory Standards Institute (CLSI) M100–Ed33<sup>1</sup> and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) v13.0.<sup>2</sup>

#### 2.4. Whole genome sequencing

All isolates fitting the following criteria were referred to a central laboratory (Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research). *E. coli, Klebsiella* spp., *Proteus* spp. and *Salmonella* spp. with a ceftazidime or ceftriaxone minimum inhibitory concentration (MIC) >1 mg/L, or cefoxitin MIC >8 mg/L; any other *Enterobacterales* with cefepime MIC >1 mg/L; *Salmonella* spp. with ciprofloxacin MIC > 0.25 mg/L; all *Enterobacterales* with meropenem MIC >0.25 mg/L; all *Acinetobacter* species or *P. aeruginosa* with meropenem MIC ≥ 8 mg/L; all isolates with amikacin MIC >32 mg/L, and all isolates with colistin MIC > 4 mg/L Whole genome sequencing (WGS) was performed on all referred isolates using the Illumina NextSeq<sup>TM</sup> 500 platform (Antimicrobial Resistance Laboratory, Microbial Genomics Reference Laboratory, Centre for Infectious Diseases and Microbiology and Microbiology Laboratory Services [CIDMLS], Institute of Clinical Pathology and Medical Research [ICPMR], Westmead Hospital) Data were analysed using a modified version of the Nullarbor bioinformatic pipeline.<sup>3</sup>

#### 2.5. Statistical analysis

Confidence intervals of proportions, Fisher's exact test for categorical variables, and chi-square test for trend were calculated, if appropriate, using GraphPad Prism version 10.0.0 for Windows (GraphPad Software, La Jolla, California).

## 3.Results

### 3.1. Isolates recovered

During 2022, a total of 9,739 gram-negative bloodstream isolates (23 genera, 60 species/complexes) were reported from 55 participating hospitals.

*Enterobacterales* accounted for 90.1%, followed by *P. aeruginosa* (8.6%) and *Acinetobacter* (1.3%). Of the *Enterobacterales*, three genera – *Escherichia* (60.1%), *Klebsiella* (20.9%) and *Enterobacter* (5.7%) – contributed 86.7% of all isolates. Overall, the top 10 ranked species were *E. coli* (54.1%), *K. pneumoniae* complex (14.3%), *P. aeruginosa* (8.6%), *E. cloacae* complex (4.9%), *Proteus mirabilis* (3.3%), *K. oxytoca* (3.0%), *Serratia marcescens* (2.6%), *K. aerogenes* (1.3%), *Morganella morganii* (1.1%), *Salmonella* species (non-typhoidal) and *Citrobacter freundii* complex (1.0%, equal rank). These 11 species contributed 95.5% of all isolates (Table 2).

The proportion of isolates from paediatric patients (<18 years of age) was 4.3% (n = 423; Enterobacterales n = 375, P. aeruginosa n = 38 and Acinetobacter spp. n = 10). Enterobacter cloacae complex and Salmonella spp. episodes were more common among paediatric patients than adults (8.4% versus 4.8% and 11.9% versus 0.9%, respectively) (data not shown).

| Organism                           | NSW   | Vic   | Qld   | SA  | WA    | Tas | NT  | ACT | Total |
|------------------------------------|-------|-------|-------|-----|-------|-----|-----|-----|-------|
| Gram-negative species*             | 3,210 | 1,960 | 1,398 | 785 | 1,325 | 426 | 296 | 339 | 9,739 |
| Acinetobacter                      | 23    | 25    | 26    | 12  | 15    | 9   | 12  | 4   | 126   |
| Acinetobacter baumannii complex    | 10    | 18    | 22    | 3   | 4     | 3   | 9   | 1   | 70    |
| Acinetobacter Iwoffii              | 4     | 0     | 0     | 4   | 3     | 2   | 2   | 1   | 16    |
| Acinetobacter species <sup>†</sup> | 2     | 6     | 0     | 1   | 5     | 1   | 1   | 0   | 16    |
| Acinetobacter ursingii             | 5     | 0     | 2     | 3   | 1     | 0   | 0   | 1   | 12    |
| Acinetobacter radioresistens       | 1     | 0     | 0     | 1   | 0     | 2   | 0   | 1   | 5     |
| Acinetobacter johnsonii            | 0     | 0     | 1     | 0   | 0     | 1   | 0   | 0   | 2     |
| Acinetobacter guillouiae           | 0     | 0     | 0     | 0   | 1     | 0   | 0   | 0   | 1     |
| Acinetobacter gyllenbergii         | 0     | 0     | 1     | 0   | 0     | 0   | 0   | 0   | 1     |
| Acinetobacter haemolyticus         | 0     | 0     | 0     | 0   | 1     | 0   | 0   | 0   | 1     |
| Acinetobacter junii                | 1     | 0     | 0     | 0   | 0     | 0   | 0   | 0   | 1     |
| Acinetobacter soli                 | 0     | 1     | 0     | 0   | 0     | 0   | 0   | 0   | 1     |
| Enterobacterales                   | 2,915 | 1,789 | 1,218 | 697 | 1,197 | 381 | 271 | 305 | 8,773 |
| Escherichia coli                   | 1,773 | 1,056 | 712   | 441 | 696   | 231 | 174 | 190 | 5,273 |
| Klebsiella pneumoniae complex      | 446   | 283   | 227   | 83  | 212   | 50  | 52  | 42  | 1,395 |
| Enterobacter cloacae complex       | 170   | 98    | 88    | 23  | 52    | 19  | 9   | 18  | 477   |
| Proteus mirabilis                  | 113   | 69    | 44    | 31  | 48    | 9   | 4   | 6   | 324   |
| Klebsiella oxytoca                 | 87    | 78    | 30    | 28  | 43    | 16  | 5   | 10  | 297   |
| Serratia marcescens                | 105   | 52    | 36    | 7   | 35    | 8   | 4   | 10  | 257   |
| Klebsiella aerogenes               | 39    | 30    | 15    | 13  | 18    | 7   | 3   | 5   | 130   |
| Morganella morganii                | 49    | 19    | 12    | 11  | 9     | 7   | 2   | 1   | 110   |
| Citrobacter freundii complex       | 33    | 20    | 7     | 7   | 20    | 5   | 0   | 5   | 97    |
| Salmonella species (non-typhoidal) | 21    | 16    | 17    | 0   | 18    | 12  | 10  | 3   | 97    |
| Citrobacter koseri                 | 26    | 12    | 9     | 8   | 14    | 4   | 4   | 3   | 80    |
| Salmonella species (typhoidal)     | 9     | 16    | 2     | 1   | 5     | 1   | 1   | 3   | 38    |
| Raoultella ornithinolytica         | 9     | 3     | 2     | 1   | 7     | 3   | 0   | 3   | 28    |
| Enterobacter species <sup>†</sup>  | 0     | 0     | 0     | 23  | 0     | 0   | 0   | 0   | 23    |
| Providencia rettgeri               | 4     | 7     | 3     | 3   | 1     | 0   | 0   | 1   | 19    |
|                                    |       |       |       |     |       |     |     |     |       |

Table 2: Number of each species recovered, by state and territory, AGAR, 2022

| Organism                               | NSW | Vic | Qld | SA | WA  | Tas | NT | ACT | Total |
|----------------------------------------|-----|-----|-----|----|-----|-----|----|-----|-------|
| Providencia stuartii                   | 5   | 3   | 1   | 0  | 3   | 0   | 1  | 0   | 13    |
| Pantoea agglomerans                    | 1   | 4   | 1   | 1  | 3   | 2   | 0  | 0   | 12    |
| Proteus hauseri                        | 6   | 2   | 0   | 1  | 1   | 0   | 1  | 0   | 11    |
| Hafnia alvei                           | 1   | 2   | 2   | 1  | 4   | 0   | 0  | 0   | 10    |
| <i>Klebsiella</i> species <sup>†</sup> | 2   | 1   | 1   | 3  | 0   | 1   | 0  | 0   | 8     |
| Pantoea septica                        | 2   | 3   | 0   | 0  | 0   | 1   | 0  | 2   | 8     |
| Pantoea species <sup>†</sup>           | 1   | 3   | 1   | 0  | 2   | 1   | 0  | 0   | 8     |
| Raoultella planticola                  | 2   | 2   | 1   | 0  | 0   | 2   | 0  | 0   | 7     |
| Proteus vulgaris                       | 2   | 1   | 0   | 0  | 2   | 0   | 0  | 1   | 6     |
| Serratia liquefaciens complex          | 2   | 2   | 0   | 1  | 0   | 1   | 0  | 0   | 6     |
| Raoultella species <sup>†</sup>        | 0   | 3   | 0   | 1  | 0   | 0   | 0  | 0   | 4     |
| Serratia species <sup>†</sup>          | 0   | 0   | 0   | 4  | 0   | 0   | 0  | 0   | 4     |
| Citrobacter amalonaticus               | 1   | 1   | 0   | 0  | 1   | 0   | 0  | 0   | 3     |
| Cronobacter sakazakii                  | 0   | 0   | 2   | 0  | 1   | 0   | 0  | 0   | 3     |
| Citrobacter species <sup>†</sup>       | 0   | 0   | 0   | 2  | 0   | 0   | 0  | 0   | 2     |
| Escherichia hermannii                  | 2   | 0   | 0   | 0  | 0   | 0   | 0  | 0   | 2     |
| Kluyvera ascorbata                     | 1   | 0   | 1   | 0  | 0   | 0   | 0  | 0   | 2     |
| Pluralibacter gergoviae                | 1   | 0   | 1   | 0  | 0   | 0   | 0  | 0   | 2     |
| Proteus penneri                        | 0   | 1   | 1   | 0  | 0   | 0   | 0  | 0   | 2     |
| Serratia rubidaea                      | 0   | 0   | 0   | 0  | 1   | 0   | 0  | 1   | 2     |
| Citrobacter farmeri                    | 0   | 0   | 0   | 0  | 0   | 0   | 0  | 1   | 1     |
| Enterobacter cancerogenus              | 1   | 0   | 0   | 0  | 0   | 0   | 0  | 0   | 1     |
| Escherichia vulneris                   | 1   | 0   | 0   | 0  | 0   | 0   | 0  | 0   | 1     |
| Leclercia adecarboxylata               | 0   | 0   | 1   | 0  | 0   | 0   | 0  | 0   | 1     |
| Lelliottia amnigena                    | 0   | 1   | 0   | 0  | 0   | 0   | 0  | 0   | 1     |
| Pantoea dispersa                       | 0   | 0   | 0   | 1  | 0   | 0   | 0  | 0   | 1     |
| Plesiomonas shigelloides               | 0   | 1   | 0   | 0  | 0   | 0   | 0  | 0   | 1     |
| Proteus species <sup>†</sup>           | 0   | 0   | 0   | 1  | 0   | 0   | 0  | 0   | 1     |
| Serratia ficaria                       | 0   | 0   | 1   | 0  | 0   | 0   | 0  | 0   | 1     |
| Shigella flexneri                      | 0   | 0   | 0   | 0  | 0   | 0   | 1  | 0   | 1     |
| Yersinia enterocolitica                | 0   | 0   | 0   | 0  | 1   | 0   | 0  | 0   | 1     |
| Yersinia pseudotuberculosis            | 0   | 0   | 0   | 0  | 0   | 1   | 0  | 0   | 1     |
| Yokenella regensburgei                 | 0   | 0   | 0   | 1  | 0   | 0   | 0  | 0   | 1     |
| Pseudomonas aeruginosa                 | 272 | 146 | 154 | 76 | 113 | 36  | 13 | 30  | 840   |

\* Acinetobacter, Enterobacterales and Pseudomonas aeruginosa
 † Species not determined

Note: Acinetobacter baumannii complex includes A. nosocomalis (n = 6) and A. pittii (n = 5); Citrobacter freundi complex includes C. braakii (n = 7) and C. youngae (n = 2); Enterobacter cloacae complex includes E. asburiae (n = 5), E. bugandensis (n = 5), E. hormaechei (n = 5), E. ludwigii (n = 1); Klebsiella pneumoniae complex K. variicola (n = 121) and K. quasipneumoniae (n = 3).

### 3.2. Place of onset of bacteraemia

Almost all patients with gram-negative bacteraemia were admitted to hospital (9,562, 98.2%).

Information on place of onset of bacteraemia was available for all gram-negative episodes (Table 3).

For gram-negative species, 74.6% of all episodes were CO, with differences between *Enterobacterales* (76.5%), *Acinetobacter* species (66.7%) and *P. aeruginosa* (56.4%). The proportion of *Enterobacterales* that were CO was significantly lower in paediatric patients (67.5%, 253/375) than adults (76.9%, 6,455/8,398) (P < 0.01), most notable for *E. coli* (paediatrics 74.0%, adults 82.8%) and *K. pneumoniae* complex isolates (paediatrics 40.0%, adults 70.4%) (data not shown).

| Organism                                  | Community onset % ( <i>n</i> ) | Hospital onset % ( <i>n</i> ) | Total, 100% |
|-------------------------------------------|--------------------------------|-------------------------------|-------------|
| Gram-negative species*                    | 74.6 (7,266)                   | 25.4 (2,473)                  | 9,739       |
| Acinetobacter                             | 66.7 (84)                      | 33.3 (42)                     | 126         |
| Acinetobacter baumannii complex           | 58.6 (41)                      | 41.4 (29)                     | 70          |
| Acinetobacter Iwoffii                     | 81.3 (13)                      | 18.8 (3)                      | 16          |
| Acinetobacter species <sup>†</sup>        | 75.0 (12)                      | 25.0 (4)                      | 16          |
| Acinetobacter ursingii                    | 66.7 (8)                       | 33.3 (4)                      | 12          |
| Other Acinetobacter species $(n = 7)$     | 83.3 (10)                      | 16.7 (2)                      | 12          |
| Enterobacterales                          | 76.5 (6,708)                   | 23.5 (2,065)                  | 8,773       |
| Escherichia coli                          | 82.5 (4,349)                   | 17.5 (924)                    | 5,273       |
| Klebsiella pneumoniae complex             | 69.4 (968)                     | 30.6 (427)                    | 1,395       |
| Enterobacter cloacae complex              | 52.4 (250)                     | 47.6 (227)                    | 477         |
| Proteus mirabilis                         | 82.4 (267)                     | 17.6 (57)                     | 324         |
| Klebsiella oxytoca                        | 66.0 (196)                     | 34.0 (101)                    | 297         |
| Serratia marcescens                       | 44.4 (114)                     | 55.6 (143)                    | 257         |
| Klebsiella aerogenes                      | 60.8 (79)                      | 39.2 (51)                     | 130         |
| Morganella morganii                       | 70.9 (78)                      | 29.1 (32)                     | 110         |
| Citrobacter freundii complex              | 74.2 (72)                      | 25.8 (25)                     | 97          |
| Salmonella species (non-typhoidal)        | 91.8 (89)                      | 8.2 (8)                       | 97          |
| Citrobacter koseri                        | 82.5 (66)                      | 17.5 (14)                     | 80          |
| Salmonella species (typhoidal)            | 94.7 (36)                      | 5.3 (2)                       | 38          |
| Raoultella ornithinolytica                | 78.6 (22)                      | 21.4 (6)                      | 28          |
| Enterobacter species <sup>†</sup>         | 82.6 (19)                      | 17.4 (4)                      | 23          |
| Providencia rettgeri                      | 84.2 (16)                      | 15.8 (3)                      | 19          |
| Providencia stuartii                      | 92.3 (12)                      | 7.7 (1)                       | 13          |
| Pantoea agglomerans                       | 66.7 (8)                       | 33.3 (4)                      | 12          |
| Proteus hauseri                           | 90.9 (10)                      | 9.1 (1)                       | 11          |
| Hafnia alvei                              | 70.0 (7)                       | 30.0 (3)                      | 10          |
| Other Enterobacterales species $(n = 29)$ | 61.0 (50)                      | 39.0 (32)                     | 82          |
| Pseudomonas aeruginosa                    | 56.4 (474)                     | 43.6 (366)                    | 840         |

Table 3: Species recovered from patients with bacteraemia, by place of onset, AGAR, 2022

\* Acinetobacter, Enterobacterales and Pseudomonas aeruginosa

<sup>†</sup> Species not determined

Note: Acinetobacter baumannii complex includes A. nosocomalis (n = 6) and A. pittii (n = 5); Citrobacter freundi complex includes C. braakii (n = 7) and C. youngae (n = 2); Enterobacter cloacae complex includes E. asburiae (n = 5), E. bugandensis (n = 5), E. hormaechei (n = 5), E. ludwigii (n = 1); Klebsiella pneumoniae complex K. variicola (n = 121) and K. quasipneumoniae (n = 3).

### 3.3. Onset versus 30-day all-cause mortality

Information on 30-day all-cause mortality, when place of onset was known (CO vs HO), was available for 7,052 (72.4%) episodes involving gram-negative species.

The 30-day all-cause mortality rate was 12.5% (789/6,318) for *Enterobacterales*, 18.4% (115/626) for *P. aeruginosa* and 13.0% (14/108) for *Acinetobacter*. There was no significant difference in 30-day all-cause mortality between CO and HO episodes (Table 4). There was a significant difference in 30-day all-cause mortality between paediatric patients (3.7%, 11/295) and adults (12.9%, 778/6,023) for *Enterobacterales* (P < 0.01). The 30-day all-cause mortality among persons aged 90 days or less with episodes of *Enterobacterales* was 7.6% (8/105).

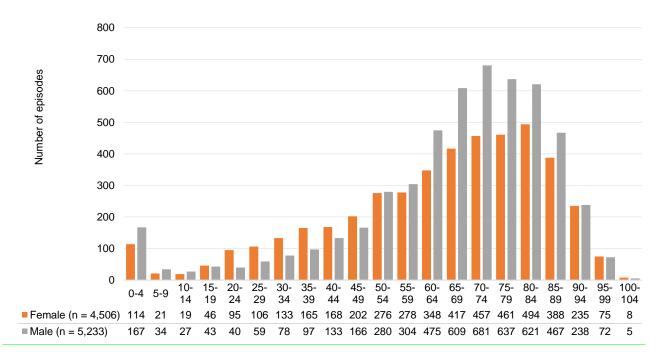
|                                                  | Community onset |                          | Hospit | al onset                 | Total  |                          |  |
|--------------------------------------------------|-----------------|--------------------------|--------|--------------------------|--------|--------------------------|--|
| Organism                                         | Number          | Deaths %<br>( <i>n</i> ) | Number | Deaths %<br>( <i>n</i> ) | Number | Deaths %<br>( <i>n</i> ) |  |
| Gram-negative species*                           | 5,178           | 12.4 (642)               | 1,874  | 14.7 (276)               | 7,052  | 13.0 (918)               |  |
| Acinetobacter                                    | 71              | 15.5 (11)                | 37     | 8.1 (3)                  | 108    | 13.0 (14)                |  |
| Acinetobacter baumannii complex                  | 32              | 12.5 (4)                 | 24     | 12.5 (3)                 | 56     | 12.5 (7)                 |  |
| Acinetobacter species <sup>†</sup>               | 12              | 16.7 (2)                 | 4      | 0.0 (0)                  | 16     | 12.5 (2)                 |  |
| Acinetobacter Iwoffii                            | 10              | 30.0 (3)                 | 3      | 0.0 (0)                  | 13     | 23.1 (3)                 |  |
| Acinetobacter ursingii                           | 7               | 0.0 (0)                  | 4      | 0.0 (0)                  | 11     | 0.0 (0)                  |  |
| Other Acinetobacter species $(n = 7)$            | 10              | 20.0 (2)                 | 2      | 0.0 (0)                  | 12     | 16.7 (2)                 |  |
| Enterobacterales                                 | 4,758           | 11.9 (565)               | 1,560  | 14.4 (224)               | 6,318  | 12.5 (789)               |  |
| Escherichia coli                                 | 2,998           | 11.1 (334)               | 690    | 13.3 (92)                | 3,688  | 11.6 (426)               |  |
| Klebsiella pneumoniae complex                    | 707             | 12.2 (86)                | 319    | 13.8 (44)                | 1,026  | 12.7 (130)               |  |
| Enterobacter cloacae complex                     | 188             | 10.1 (19)                | 180    | 16.1 (29)                | 368    | 13.0 (48)                |  |
| Proteus mirabilis                                | 203             | 20.7 (42)                | 44     | 18.2 (8)                 | 247    | 20.2 (50)                |  |
| Klebsiella oxytoca                               | 143             | 11.9 (17)                | 74     | 14.9 (11)                | 217    | 12.9 (28)                |  |
| Serratia marcescens                              | 83              | 16.9 (14)                | 106    | 12.3 (13)                | 189    | 14.3 (27)                |  |
| Klebsiella aerogenes                             | 66              | 16.7 (11)                | 36     | 13.9 (5)                 | 102    | 15.7 (16)                |  |
| Morganella morganii                              | 58              | 20.7 (12)                | 25     | 24.0 (6)                 | 83     | 21.7 (18)                |  |
| Citrobacter freundii complex                     | 57              | 15.8 (9)                 | 22     | 13.6 (3)                 | 79     | 15.2 (12)                |  |
| Salmonella species (non-typhoidal)               | 58              | 0.0 (0)                  | 7      | 0.0 (0)                  | 65     | 0.0 (0)                  |  |
| Citrobacter koseri                               | 48              | 10.4 (5)                 | 12     | 25.0 (3)                 | 60     | 13.3 (8)                 |  |
| Raoultella ornithinolytica                       | 19              | 10.5 (2)                 | 5      | 0.0 (0)                  | 24     | 8.3 (2)                  |  |
| Enterobacter species <sup>†</sup>                | 19              | 5.3 (1)                  | 4      | 75.0 (3)                 | 23     | 17.4 (4)                 |  |
| Salmonella species (typhoidal)                   | 22              | 0.0 (0)                  | 0      | n/a                      | 22     | 0.0 (0)                  |  |
| Providencia rettgeri                             | 14              | 21.4 (3)                 | 2      | 100.0 (2)                | 16     | 31.3 (5)                 |  |
| Pantoea agglomerans                              | 7               | 0.0 (0)                  | 4      | 0.0 (0)                  | 11     | 0.0 (0)                  |  |
| Providencia stuartii                             | 10              | 20.0 (2)                 | 0      | n/a                      | 10     | 20.0 (2)                 |  |
| Other <i>Enterobacterales</i> species $(n = 30)$ | 58              | 13.8 (8)                 | 30     | 16.7 (5)                 | 88     | 14.8 (13)                |  |
| Pseudomonas aeruginosa                           | 349             | 18.9 (66)                | 277    | 17.7 (49)                | 626    | 18.4 (115)               |  |

Table 4: Onset setting and 30-day all-cause mortality (blood culture isolates), AGAR, 2022

n/a = not applicable

Acinetobacter, Enterobacterales and Pseudomonas aeruginosa

<sup>†</sup> Species not determined


Note: Acinetobacter baumannii complex includes A. nosocomalis (n = 6) and A. pittii (n = 5); Citrobacter freundi complex includes C. braakii (n = 7) and C. youngae (n = 2); Enterobacter cloacae complex includes E. asburiae (n = 5), E. bugandensis (n = 5), E. hormaechei (n = 5), E. ludwigii (n = 1); Klebsiella pneumoniae complex K. variicola (n = 121) and K. quasipneumoniae (n = 3).

### 3.4. Patient age and sex

Information on age and sex was available for all patients with gram-negative bacteraemia. The proportion of males was 53.7% and females 46.3%.

Increasing age was a risk factor for bacteraemia (Figure 1); only 12.8% (1,244/9,739) of gramnegative species episodes were in patients aged less than 40 years. The proportion of patients aged 0–19 years was 4.8% (n = 471). Almost half (141/285, 49.5%) of the episodes in patients aged 0–4 years were from those aged 90 days or less.

Figure 1: Number of episodes of bacteraemia due to gram-negative species, by patient age group and sex, AGAR, 2022



Note: x-axis = age range in years.

## 3.5. Principal clinical manifestations

The principal clinical manifestations, which represent the most likely primary site or source for the origin of the blood stream infection, are described below for patients with gram-negative bacteraemia.

The principal clinical manifestation was documented for 8,545 (87.7%) patient episodes of gramnegative bacteraemia. The most frequent clinical manifestations for episodes caused by *Enterobacterales* were urinary tract infection (45.1%) or biliary tract infection (15.0%); for *P. aeruginosa*, urinary tract infections (29.8%) or febrile neutropenia (18.4%) were the most common. For *Acinetobacter*, device-related infection without metastatic focus (23.3%) was the most common while 20.7% had no identifiable focus (Table 5).

| Principal clinical manifestation                   | Female % ( <i>n</i> ) | Male % ( <i>n</i> ) | Total % ( <i>n</i> ) |
|----------------------------------------------------|-----------------------|---------------------|----------------------|
| Gram-negative species*                             | 3,949                 | 4,596               | 8,545                |
| Acinetobacter                                      | 48                    | 68                  | 116                  |
| Device-related infection without metastatic focus  | 29.2 (14)             | 19.1 (13)           | 23.3 (27)            |
| No identifiable focus                              | 20.8 (10)             | 20.6 (14)           | 20.7 (24)            |
| Skin and skin structure infection                  | 10.4 (5)              | 22.1 (15)           | 17.2 (20)            |
| Other clinical syndrome                            | 14.6 (7)              | 19.1 (13)           | 17.2 (20)            |
| Febrile neutropenia                                | 10.4 (5)              | 5.9 (4)             | 7.8 (9)              |
| Intra-abdominal infection other than biliary tract | 4.2 (2)               | 4.4 (3)             | 4.3 (5)              |
| Urinary tract infection                            | 2.1 (1)               | 4.4 (3)             | 3.4 (4)              |
| Biliary tract infection (including cholangitis)    | 4.2 (2)               | 2.9 (2)             | 3.4 (4)              |
| Enterobacterales                                   | 3,629                 | 4,046               | 7,675                |
| Urinary tract infection                            | 52.3 (1,897)          | 38.7 (1,565)        | 45.1 (3,462)         |
| Biliary tract infection (including cholangitis)    | 12.9 (468)            | 16.9 (683)          | 15.0 (1,151)         |
| Intra-abdominal infection other than biliary tract | 8.7 (317)             | 11.5 (465)          | 10.2 (782)           |
| Febrile neutropenia                                | 8.0 (291)             | 10.5 (423)          | 9.3 (714)            |
| No identifiable focus                              | 7.1 (257)             | 7.7 (310)           | 7.4 (567)            |
| Other clinical syndrome                            | 5.0 (180)             | 6.9 (280)           | 6.0 (460)            |
| Device-related infection without metastatic focus  | 3.1 (113)             | 3.3 (132)           | 3.2 (245)            |
| Skin and skin structure infection                  | 2.1 (76)              | 3.2 (128)           | 2.7 (204)            |
| Osteomyelitis/septic arthritis                     | 0.7 (24)              | 1.1 (43)            | 0.9 (67)             |
| Device-related infection with metastatic focus     | 0.2 (6)               | 0.4 (17)            | 0.3 (23)             |
| Pseudomonas aeruginosa                             | 272                   | 482                 | 754                  |
| Urinary tract infection                            | 21.7 (59)             | 34.4 (166)          | 29.8 (225)           |
| Febrile neutropenia                                | 19.9 (54)             | 17.6 (85)           | 18.4 (139)           |
| Other clinical syndrome                            | 12.1 (33)             | 11.6 (56)           | 11.8 (89)            |
| Device-related infection without metastatic focus  | 9.2 (25)              | 10.0 (48)           | 9.7 (73)             |
| No identifiable focus                              | 10.3 (28)             | 8.7 (42)            | 9.3 (70)             |
| Skin and skin structure infection                  | 11.4 (31)             | 5.8 (28)            | 7.8 (59)             |
| Intra-abdominal infection other than biliary tract | 8.8 (24)              | 6.6 (32)            | 7.4 (56)             |
| Biliary tract infection (including cholangitis)    | 5.9 (16)              | 4.1 (20)            | 4.8 (36)             |
| Osteomyelitis/septic arthritis                     | 0.4 (1)               | 0.8 (4)             | 0.7 (5)              |
| Device-related infection with metastatic focus     | 0.4 (1)               | 0.2 (1)             | 0.3 (2)              |

Table 5: Principal clinical manifestation for gram-negative bacteraemia, by patient sex, AGAR, 2022

\* Acinetobacter, Enterobacterales and Pseudomonas aeruginosa

Urinary tract infection was the most frequent principal manifestation for CO episodes caused by *Enterobacterales* (51.2%) and *P. aeruginosa* (34.7%). For HO episodes, urinary tract infection (*Enterobacterales* 24.7%, *P. aeruginosa* 23.2%) and febrile neutropenia (*Enterobacterales* 22.5%, *P. aeruginosa* 24.1%) were the most common.

For *Enterobacterales* with urinary tract infection as the principal clinical manifestation, only a small proportion (388/3460, 11.2%) were regarded as a device related infection. This was higher for HO than CO episodes (CO: 285/3023, 9.4%; HO: 103/447, 23.6%, P < 0.01).

#### 3.6. Length of hospital stay following bacteraemic episode

Information on length of hospital stay following bacteraemia was available for 8,894 (91.3%) episodes involving gram-negative species.

Over half (3,362/6,581, 51.1%) of patients with a CO gram-negative bacteraemia had a length of hospital stay of less than seven days. Just over one-third of patients with HO bacteraemia caused by *Acinetobacter* (14/41, 34.1%) remained in hospital for more than 30 days (Table 6).

**Table 6:** Length of hospital stay following gram-negative bacteraemia, by species and place of onset, AGAR, 2022

|                                   |                    | Length of stay (days) |                       |                     |       |  |  |  |  |
|-----------------------------------|--------------------|-----------------------|-----------------------|---------------------|-------|--|--|--|--|
| Species                           | <7, % ( <i>n</i> ) | 7–14, % ( <i>n</i> )  | 15–30, % ( <i>n</i> ) | >30, % ( <i>n</i> ) | Total |  |  |  |  |
| Gram-negative species*            | 43.3 (3,852)       | 30.4 (2,708)          | 15.5 (1,381)          | 10.7 (953)          | 8,894 |  |  |  |  |
| Community onset                   | 51.1 (3,362)       | 30.6 (2,012)          | 12.2 (802)            | 6.2 (405)           | 6,581 |  |  |  |  |
| Hospital onset                    | 21.2 (490)         | 30.1 (696)            | 25.0 (579)            | 23.7 (548)          | 2,313 |  |  |  |  |
| Acinetobacter                     | 39.0 (46)          | 27.1 (32)             | 14.4 (17)             | 19.5 (23)           | 118   |  |  |  |  |
| Community onset                   | 50.6 (39)          | 32.5 (25)             | 5.2 (4)               | 11.7 (9)            | 77    |  |  |  |  |
| Hospital onset                    | 17.1 (7)           | 17.1 (7)              | 31.7 (13)             | 34.1 (14)           | 41    |  |  |  |  |
| Enterobacterales                  | 44.7 (3,574)       | 30.3 (2,427)          | 14.9 (1,193)          | 10.0 (803)          | 7,997 |  |  |  |  |
| Community onset                   | 52.1 (3,158)       | 30.2 (1,833)          | 11.7 (710)            | 6.0 (366)           | 6,067 |  |  |  |  |
| Hospital onset                    | 21.6 (416)         | 30.8 (594)            | 25.0 (483)            | 22.6 (437)          | 1,930 |  |  |  |  |
| Escherichia coli                  | 49.2 (2,357)       | 29.1 (1,392)          | 13.4 (641)            | 8.4 (400)           | 4,790 |  |  |  |  |
| Community onset                   | 55.1 (2,165)       | 28.8 (1,132)          | 10.7 (419)            | 5.3 (210)           | 3,926 |  |  |  |  |
| Hospital onset                    | 22.2 (192)         | 30.1 (260)            | 25.7 (222)            | 22.0 (190)          | 864   |  |  |  |  |
| Klebsiella pneumoniae complex     | 35.7 (452)         | 33.6 (426)            | 18.2 (231)            | 12.4 (157)          | 1,266 |  |  |  |  |
| Community onset                   | 43.2 (376)         | 34.0 (296)            | 15.1 (131)            | 7.7 (67)            | 870   |  |  |  |  |
| Hospital onset                    | 19.2 (76)          | 32.8 (130)            | 25.3 (100)            | 22.7 (90)           | 396   |  |  |  |  |
| Enterobacter cloacae complex      | 32.7 (147)         | 34.1 (153)            | 19.2 (86)             | 14.0 (63)           | 449   |  |  |  |  |
| Community onset                   | 42.9 (99)          | 38.5 (89)             | 12.6 (29)             | 6.1 (14)            | 231   |  |  |  |  |
| Hospital onset                    | 22.0 (48)          | 29.4 (64)             | 26.1 (57)             | 22.5 (49)           | 218   |  |  |  |  |
| Other Enterobacterales $(n = 44)$ | 41.4 (618)         | 30.6 (456)            | 15.8 (235)            | 12.3 (183)          | 1,492 |  |  |  |  |
| Pseudomonas aeruginosa            | 29.8 (232)         | 32.0 (249)            | 22.0 (171)            | 16.3 (127)          | 779   |  |  |  |  |
| Community onset                   | 37.8 (165)         | 35.2 (154)            | 20.1 (88)             | 6.9 (30)            | 437   |  |  |  |  |
| Hospital onset                    | 19.6 (67)          | 27.8 (95)             | 24.3 (83)             | 28.4 (97)           | 342   |  |  |  |  |

\* Acinetobacter, Enterobacterales and Pseudomonas aeruginosa

## 3.7. Susceptibility testing results

The following sections present the results of susceptibility testing in priority indicator species, and antimicrobial resistance by place of onset and multi-drug resistance. Susceptibility testing methods are described in Appendix B.

#### Percentages of non-susceptibility in national priority indicator species

Overall percentages of resistance or non-susceptibility in the indicator species of national priority<sup>4</sup> using both CLSI breakpoints and EUCAST breakpoints, are shown in Table 7. Resistance (as defined by EUCAST) to key antimicrobial groups (fluoroquinolones, third-generation cephalosporins, aminoglycosides and carbapenems) for *E. coli* and *K. pneumoniae* complex are shown by state and territory in Figures 2 and 3; respectively. Resistance of *P. aeruginosa* to key antipseudomonal agents is shown in Figure 4. Detailed resistance by state and territory can be found in Appendix C.

**Table 7:** Activity of antimicrobial agents tested against isolates recovered from patients with Gram-negative blood stream infections, AGAR, 2022

|                                         |                 | CL                             | SI                          | EUC                                                     | AST                         |
|-----------------------------------------|-----------------|--------------------------------|-----------------------------|---------------------------------------------------------|-----------------------------|
| Species and antimicrobial               | lsolates<br>(n) | Intermediate<br>% ( <i>n</i> ) | Resistant<br>% ( <i>n</i> ) | Susceptible,<br>increased<br>exposure %<br>( <i>n</i> ) | Resistant %<br>( <i>n</i> ) |
| Acinetobacter baumannii complex         |                 |                                |                             |                                                         |                             |
| Piperacillin-tazobactam                 | 59              | 6.8 (4)                        | 10.2 (6)                    | _*                                                      | _*                          |
| Ceftriaxone                             | 63              | 71.4 (45)                      | 4.8 (3)                     | _*                                                      | _*                          |
| Ceftazidime                             | 59              | 11.9 (7)                       | 3.4 (2)                     | _*                                                      | _*                          |
| Cefepime                                | 40              | 5.0 (2)                        | 7.5 (3)                     | _*                                                      | _*                          |
| Gentamicin                              | 67              | 0.0 (0)                        | 3.0 (2)                     | _†                                                      | 3.0 (2)                     |
| Tobramycin                              | 66              | 0.0 (0)                        | 3.0 (2)                     | _†                                                      | 3.0 (2)                     |
| Amikacin                                | 52              | 0.0 (0)                        | 1.9 (1)                     | _†                                                      | 3.8 (2)                     |
| Ciprofloxacin                           | 65              | 0.0 (0)                        | 4.6 (3)                     | 95.4 (62)                                               | 4.6 (3)                     |
| Meropenem                               | 67              | 0.0 (0)                        | 3.0 (2)                     | 0.0 (0)                                                 | 3.0 (2)                     |
| Enterobacter cloacae complex            |                 |                                |                             |                                                         |                             |
| Piperacillin-tazobactam                 | 470             | 5.7 (27)                       | 18.3 (86)                   | _†                                                      | 27.2 (128)                  |
| Ceftriaxone                             | 475             | 0.4 (2)                        | 28.4 (135)                  | 0.4 (2)                                                 | 28.4 (135)                  |
| Ceftazidime                             | 475             | 1.1 (5)                        | 23.6 (112)                  | 3.6 (17)                                                | 24.6 (117)                  |
| Cefepime                                | 475             | 3.6 (17) <sup>§</sup>          | 1.9 (9)                     | 8.6 (41)                                                | 3.4 (16)                    |
| Gentamicin                              | 473             | 0.0 (0)                        | 5.5 (26)                    | _†                                                      | 6.1 (29)                    |
| Tobramycin                              | 465             | 2.4 (11)                       | 3.7 (17)                    | _†                                                      | 6.7 (31)                    |
| Amikacin                                | 474             | 0.4 (2)                        | 0.0 (0)                     | _†                                                      | 0.6 (3)                     |
| Ciprofloxacin                           | 475             | 1.1 (5)                        | 5.3 (25)                    | 1.1 (5)                                                 | 5.3 (25)                    |
| Meropenem                               | 475             | 0.2 (1)                        | 2.5 (12)                    | 0.4 (2)                                                 | 2.1 (10)                    |
| Escherichia coli                        |                 |                                |                             |                                                         |                             |
| Ampicillin                              | 5,257           | 1.5 (78)                       | 50.0 (2,628)                | _†                                                      | 51.5 (2,706)                |
| Amoxicillin-clavulanic acid (2:1 ratio) | 4,567           | 9.9 (452)                      | 7.4 (337)                   | _*                                                      | _*                          |
| Piperacillin-tazobactam                 | 5,243           | 2.3 (121)                      | 2.8 (147)                   | _†                                                      | 5.9 (309)                   |
| Cefazolin                               | 4,594           | **                             | 22.2 (1,022)                | 77.8 (3,572)                                            | 22.2 (1,022)                |
| Cefuroxime                              | 611             | 1.6 (10)                       | 16.4 (100)                  | 82.0 (501)                                              | 18.0 (110)                  |
| Ceftriaxone                             | 5,261           | 0.1 (6)                        | 12.7 (667)                  | 0.1 (6)                                                 | 12.7 (667)                  |
| Ceftazidime                             | 5,261           | 0.9 (46)                       | 5.0 (263)                   | 7.3 (384)                                               | 5.9 (309)                   |
| Cefepime                                | 5,261           | 2.1 (109) <sup>§</sup>         | 2.1 (112)                   | 6.6 (345)                                               | 3.1 (162)                   |

|                                                                    |                          | CLSI                           |                             |                                                | CAST                        |  |
|--------------------------------------------------------------------|--------------------------|--------------------------------|-----------------------------|------------------------------------------------|-----------------------------|--|
| Species and antimicrobial                                          | lsolates<br>( <i>n</i> ) | Intermediate<br>% ( <i>n</i> ) | Resistant<br>% ( <i>n</i> ) | Susceptible,<br>increased<br>exposure %<br>(n) | Resistant %<br>( <i>n</i> ) |  |
| Gentamicin                                                         | 5,259                    | 0.1 (4)                        | 7.9 (415)                   | _†                                             | 8.3 (437)                   |  |
| Tobramycin                                                         | 5,233                    | 5.8 (301)                      | 2.4 (127)                   | _†                                             | 8.6 (450)                   |  |
| Amikacin                                                           | 5,260                    | 0.1 (3)                        | 0.0 (2)                     | _†                                             | 0.9 (48)                    |  |
| Ciprofloxacin                                                      | 5,259                    | 3.7 (196)                      | 13.7 (721)                  | 3.7 (196)                                      | 13.7 (721)                  |  |
| Meropenem                                                          | 5,260                    | 0.0 (1)                        | 0.1 (7)                     | 0.1 (3)                                        | 0.1 (4)                     |  |
| Klebsiella aerogenes                                               |                          |                                |                             |                                                |                             |  |
| Piperacillin-tazobactam                                            | 129                      | 10.1 (13)                      | 20.9 (27)                   | _†                                             | 37.2 (48)                   |  |
| Ceftriaxone                                                        | 129                      | 0.8 (1)                        | 33.3 (43)                   | 0.8 (1)                                        | 33.3 (43)                   |  |
| Ceftazidime                                                        | 129                      | 3.1 (4)                        | 30.2 (39)                   | 3.9 (5)                                        | 33.3 (43)                   |  |
| Cefepime                                                           | 129                      | 2.3 (3)§                       | 0.0 (0)                     | 3.1 (4)                                        | 1.6 (2)                     |  |
| Gentamicin                                                         | 129                      | 0.0 (0)                        | 2.3 (3)                     | _†                                             | 2.3 (3)                     |  |
| Tobramycin                                                         | 129                      | 2.3 (3)                        | 0.0 (0)                     | _†                                             | 2.3 (3)                     |  |
| Amikacin                                                           | 129                      | 0.0 (0)                        | 0.0 (0)                     | _†                                             | 0.0 (0)                     |  |
| Ciprofloxacin                                                      | 129                      | 0.8 (1)                        | 3.1 (4)                     | 0.8 (1)                                        | 3.1 (4)                     |  |
| Meropenem                                                          | 129                      | 0.0 (0)                        | 2.3 (3)                     | 1.6 (2)                                        | 0.8 (1)                     |  |
| Klebsiella oxytoca                                                 |                          |                                |                             |                                                |                             |  |
| Amoxicillin–clavulanic acid (2:1 ratio)                            | 258                      | 4.3 (11)                       | 7.4 (19)                    | _*                                             | _*                          |  |
| Piperacillin–tazobactam                                            | 295                      | 1.7 (5)                        | 8.1 (24)                    | _†                                             | 11.5 (34)                   |  |
| Cefuroxime                                                         | 35                       | 2.9 (1)                        | 2.9 (1)                     | 94.3 (33)                                      | 5.7 (2)                     |  |
| Ceftriaxone                                                        | 296                      | 0.3 (1)                        | 5.7 (17)                    | 0.3 (1)                                        | 5.7 (17)                    |  |
| Ceftazidime                                                        | 296                      | 0.3 (1)                        | 0.3 (1)                     | 0.3 (1)                                        | 0.7 (2)                     |  |
| Cefepime                                                           | 296                      | 0.0 (0)§                       | 0.3 (1)                     | 0.7 (2)                                        | 0.3 (1)                     |  |
| Gentamicin                                                         | 297                      | 0.0 (0)                        | 1.0 (3)                     |                                                | 1.0 (3)                     |  |
| Tobramycin                                                         | 296                      | 1.0 (3)                        | 0.0 (0)                     | _†                                             | 1.0 (3)                     |  |
| Amikacin                                                           | 296                      | 0.0 (0)                        | 0.0 (0)                     | _†                                             | 0.0 (0)                     |  |
| Ciprofloxacin                                                      | 297                      | 0.3 (1)                        | 0.7 (2)                     | 0.3 (1)                                        | 0.7 (2)                     |  |
| Meropenem                                                          | 295                      | 0.0 (0)                        | 0.7 (2)                     | 0.7 (2)                                        | 0.0 (0)                     |  |
| Klebsiella pneumoniae complex                                      | 200                      | 0.0 (0)                        | 0.17 (2)                    | 0.7 (2)                                        | 0.0 (0)                     |  |
| Amoxicillin–clavulanic acid (2:1 ratio)                            | 1,230                    | 4.6 (57)                       | 3.2 (39)                    | _*                                             | _*                          |  |
| Piperacillin-tazobactam                                            | 1,286                    | 1.3 (18)                       | 2.9 (40)                    | _†                                             | 8.7 (121)                   |  |
| Cefazolin                                                          | 1,235                    | -**                            | 10.1 (125)                  | 89.9 (1,110)                                   | 10.1 (125)                  |  |
| Cefuroxime                                                         | 138                      | 4.3 (6)                        | 5.8 (8)                     | 89.9 (124)                                     | 10.1 (123)                  |  |
| Ceftriaxone                                                        | 1,392                    | 0.1 (1)                        | 6.6 (92)                    | 0.1 (1)                                        | 6.6 (92)                    |  |
| Ceftazidime                                                        | 1,392                    | 0.9 (13)                       | 4.4 (61)                    | 1.9 (26)                                       | 5.3 (74)                    |  |
| Cefepime                                                           | 1,392                    | 0.9 (13)<br>0.9 (13)§          | 1.7 (24)                    | 3.3 (46)                                       | 2.2 (31)                    |  |
| Gentamicin                                                         | 1,392                    | 0.4 (5)                        | 3.0 (42)                    |                                                | 3.4 (47)                    |  |
| Tobramycin                                                         | 1,392                    | 2.6 (36)                       | 1.4 (20)                    |                                                | 4.1 (57)                    |  |
| Amikacin                                                           |                          |                                |                             |                                                |                             |  |
|                                                                    | 1,392                    | 0.0 (0)                        | 0.1 (1)                     |                                                | 0.2 (3)                     |  |
| Ciprofloxacin                                                      | 1,391                    | 2.1 (29)                       | 7.8 (109)                   | 2.1 (29)                                       | 7.8 (109)                   |  |
| Meropenem<br>Brotous mirabilis                                     | 1,392                    | 0.2 (3)                        | 0.6 (8)                     | 0.1 (1)                                        | 0.5 (7)                     |  |
| Proteus mirabilis                                                  | 202                      | 0.6.(0)                        | 15 0 (54)                   | _†                                             | 16 4 (50)                   |  |
| Ampicillin                                                         | 323                      | 0.6 (2)                        | 15.8 (51)                   |                                                | 16.4 (53)                   |  |
| Amoxicillin–clavulanic acid (2:1 ratio)<br>Piperacillin–tazobactam | 278                      | 5.8 (16)                       | 3.2 (9)                     | *<br>t                                         | -*                          |  |
| enouracium_razonaciam                                              | 322                      | 0.0 (0)                        | 0.0 (0)                     |                                                | 0.0 (0)                     |  |

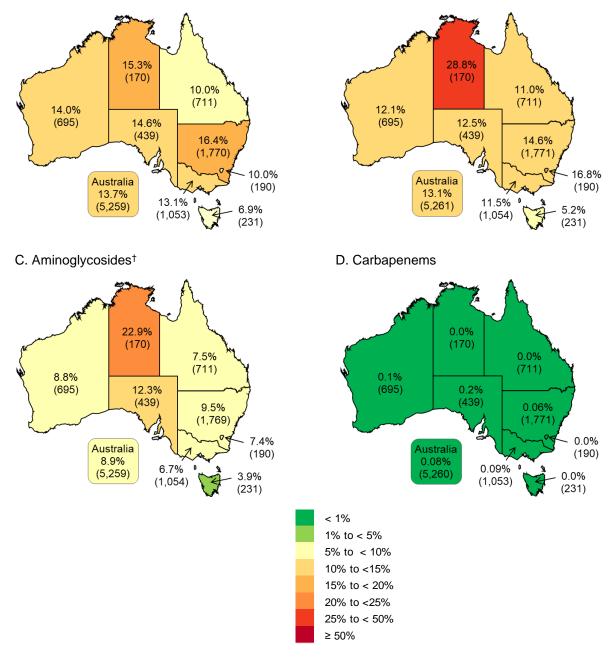
|                                         |                 | CL                             | SI                          | EUCAST                                                  |                             |  |
|-----------------------------------------|-----------------|--------------------------------|-----------------------------|---------------------------------------------------------|-----------------------------|--|
| Species and antimicrobial               | lsolates<br>(n) | Intermediate<br>% ( <i>n</i> ) | Resistant<br>% ( <i>n</i> ) | Susceptible,<br>increased<br>exposure %<br>( <i>n</i> ) | Resistant %<br>( <i>n</i> ) |  |
| Ceftriaxone                             | 323             | 0.6 (2)                        | 1.2 (4)                     | 0.6 (2)                                                 | 1.2 (4)                     |  |
| Ceftazidime                             | 323             | 0.3 (1)                        | 0.6 (2)                     | 0.6 (2)                                                 | 0.9 (3)                     |  |
| Cefepime                                | 323             | 0.6 (2)§                       | 0.6 (2)                     | 0.9 (3)                                                 | 0.6 (2)                     |  |
| Gentamicin                              | 323             | 1.2 (4)                        | 1.9 (6)                     | _†                                                      | 5.0 (16)                    |  |
| Tobramycin                              | 323             | 1.2 (4)                        | 1.9 (6)                     | _†                                                      | 3.7 (12)                    |  |
| Amikacin                                | 323             | 0.0 (0)                        | 0.3 (1)                     | _†                                                      | 1.5 (5)                     |  |
| Ciprofloxacin                           | 323             | 0.6 (2)                        | 4.0 (13)                    | 0.6 (2)                                                 | 4.0 (13)                    |  |
| Meropenem                               | 323             | 0.0 (0)                        | 0.0 (0)                     | 0.0 (0)                                                 | 0.0 (0)                     |  |
| Pseudomonas aeruginosa                  |                 |                                |                             |                                                         |                             |  |
| Piperacillin-tazobactam                 | 832             | 8.5 (71)                       | 6.1 (51)                    | 85.3 (710)                                              | 14.7 (122)                  |  |
| Ceftazidime                             | 837             | 5.5 (46)                       | 5.1 (43)                    | 89.4 (748)                                              | 10.6 (89)                   |  |
| Cefepime                                | 838             | 3.3 (28)                       | 2.9 (24)                    | 93.8 (786)                                              | 6.2 (52)                    |  |
| Tobramycin                              | 827             | 0.2 (2)                        | 0.4 (3)                     | _†                                                      | 0.7 (6)                     |  |
| Amikacin                                | 836             | 0.2 (2)                        | 0.2 (2)                     | _†                                                      | 0.5 (4)                     |  |
| Ciprofloxacin                           | 836             | 5.7 (48)                       | 4.3 (36)                    | 90.0 (752)                                              | 10.0 (84)                   |  |
| Meropenem                               | 836             | 4.5 (38)                       | 5.9 (49)                    | 6.1 (51)                                                | 4.3 (36)                    |  |
| Salmonella species (non-typhoidal)      |                 |                                |                             |                                                         |                             |  |
| Ampicillin                              | 96              | 0.0 (0)                        | 5.2 (5)                     | _†                                                      | 5.2 (5)                     |  |
| Amoxicillin–clavulanic acid (2:1 ratio) | 87              | 1.1 (1)                        | 0.0 (0)                     | _*                                                      | -*                          |  |
| Piperacillin-tazobactam                 | 96              | 0.0 (0)                        | 0.0 (0)                     | _†                                                      | 0.0 (0)                     |  |
| Ceftriaxone                             | 96              | 0.0 (0)                        | 3.1 (3)                     | 0.0 (0)                                                 | 3.1 (3)                     |  |
| Ceftazidime                             | 96              | 0.0 (0)                        | 3.1 (3)                     | 0.0 (0)                                                 | 3.1 (3)                     |  |
| Cefepime                                | 96              | 1.0 (1) <sup>§</sup>           | 1.0 (1)                     | 2.1 (2)                                                 | 1.0 (1)                     |  |
| Ciprofloxacin**                         | 97              | 3.1 (3)                        | 10.3 (10)                   | _t                                                      | 13.4 (13)                   |  |
| Meropenem                               | 96              | 0.0 (0)                        | 0.0 (0)                     | 0.0 (0)                                                 | 0.0 (0)                     |  |
| Serratia marcescens                     |                 |                                |                             |                                                         |                             |  |
| Piperacillin-tazobactam                 | 212             | 0.9 (2)                        | 0.0 (0)                     | _†                                                      | 0.9 (2)                     |  |
| Ceftriaxone                             | 257             | 0.4 (1)                        | 3.1 (8)                     | 0.4 (1)                                                 | 3.1 (8)                     |  |
| Ceftazidime                             | 257             | 0.4 (1)                        | 1.6 (4)                     | 0.4 (1)                                                 | 1.9 (5)                     |  |
| Cefepime                                | 257             | 0.4 (1) <sup>§</sup>           | 0.8 (2)                     | 0.4 (1)                                                 | 1.2 (3)                     |  |
| Gentamicin                              | 257             | 0.0 (0)                        | 1.9 (5)                     |                                                         | 2.3 (6)                     |  |
| Tobramycin                              | 255             | 16.1 (41)                      | 1.2 (3)                     | _†                                                      | 31.4 (80)                   |  |
| Amikacin                                | 257             | 0.0 (0)                        | 0.0 (0)                     | _†                                                      | 0.0 (0)                     |  |
| Ciprofloxacin                           | 257             | 1.6 (4)                        | 2.3 (6)                     | 1.6 (4)                                                 | 2.3 (6)                     |  |
| Meropenem                               | 257             | 0.0 (0)                        | 1.6 (4)                     | 0.8 (2)                                                 | 0.8 (2)                     |  |

CLSI = Clinical and Laboratory Standards Institute; EUCAST = European Committee on Antimicrobial Susceptibility Testing

\* No guidelines for indicated species

No category defined t

§


Includes sensitive dose, dependent category for CLSI The cefazolin concentration range available on the Vitek card used restricts the ability to accurately identify susceptible and # intermediate (CLSI) categories

\*\* The ciprofloxacin concentration range available on the Vitek® card used restricts the ability to accurately identify susceptible (CLSI/EUCAST) and intermediate (CLSI) categories for *Salmonella* species. Results of gradient diffusion test strips or perfloxacin 5 µg disc when available, were provided

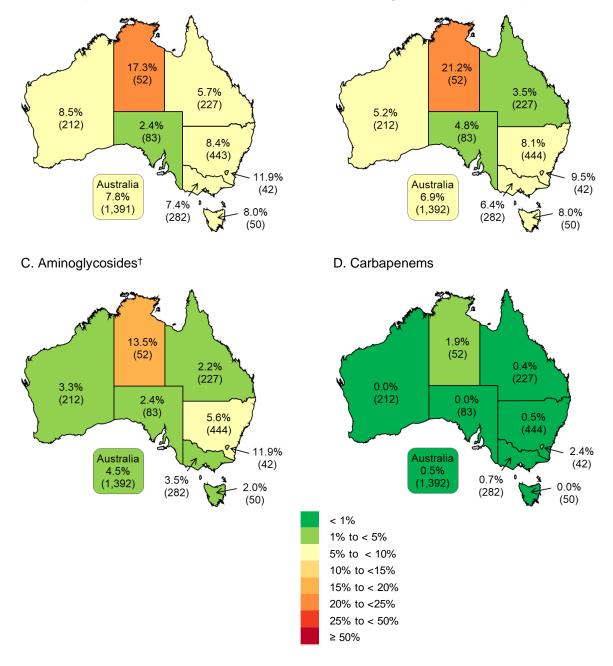
**Figure 2.** Percentage of *Escherichia coli* from patients with bacteraemia with resistance, as defined by EUCAST, to fluoroquinolones (A), third-generation cephalosporins (B), aminoglycosides (C) or carbapenems (D), Australia, AGAR, 2022

A. Fluoroquinolones

B. Third-generation cephalosporins\*



EUCAST = European Committee on Antimicrobial Susceptibility Testing


\* Third-generation cephalosporins refers to ceftriaxone and/or ceftazidime

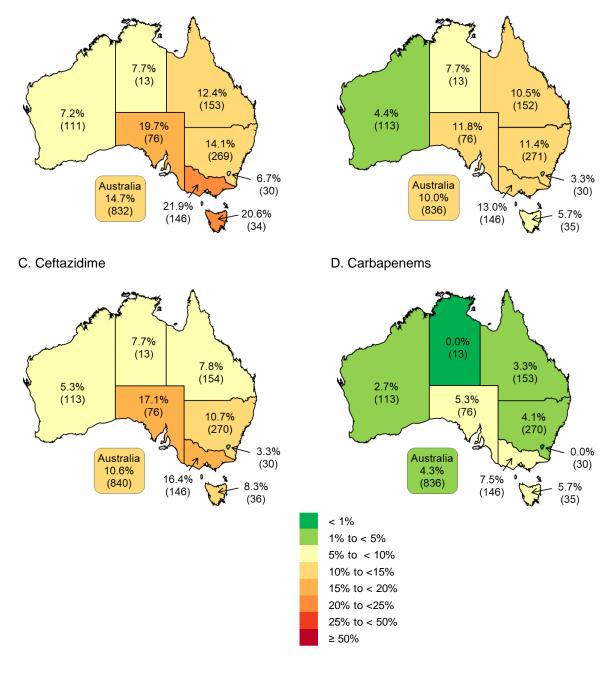
<sup>†</sup> Aminoglycosides refers to gentamicin or tobramycin

**Figure 3**. Percentage of *Klebsiella pneumoniae* complex from patients with bacteraemia with resistance, as defined by EUCAST, to fluoroquinolones (A), third-generation cephalosporins (B), aminoglycosides (C) and carbapenems (D), Australia, AGAR, 2022

A. Fluoroquinolones

B. Third-generation cephalosporins\*




EUCAST = European Committee on Antimicrobial Susceptibility Testing

- \* Third-generation cephalosporins refers to ceftriaxone and/or ceftazidime
- <sup>†</sup> Aminoglycosides refers to gentamicin or tobramycin

**Figure 4.** Percentage of *Pseudomonas aeruginosa* from patients with bacteraemia with resistance, as defined by EUCAST, to piperacillin–tazobactam (A), fluoroquinolones (B), ceftazidime (C) and carbapenems (D), Australia, AGAR, 2022

A. Piperacillin-tazobactam

**B.** Fluoroquinolones



EUCAST = European Committee on Antimicrobial Susceptibility Testing

#### Antimicrobial resistance by place of onset

Antimicrobial resistances (CLSI and EUCAST) in indicator species by place of onset, if known, are shown in Table 8.

**Table 8:** Activity of antimicrobial agents tested against species recovered from patients with Gram-negative bloodstream infections, by place of onset, AGAR, 2022

|                                         |       | Comr | nunity-o | onset |       |     | Но               | spital-on | iset |       |
|-----------------------------------------|-------|------|----------|-------|-------|-----|------------------|-----------|------|-------|
|                                         |       | CLS  | SI, %    | EUCA  | ST, % |     | CLS              | SI, %     | EUCA | ST, % |
| Species and antimicrobial               | No.   |      | R        | S-IE  | R     | No. |                  | R         | S-IE | R     |
| Acinetobacter baumannii<br>complex      |       |      |          |       |       |     |                  |           |      |       |
| Piperacillin-tazobactam                 | 30    | 6.7  | 10.0     | _*    | _*    | 29  | 6.9              | 10.3      | _*   | _*    |
| Ceftriaxone                             | 36    | 77.8 | 5.6      | _*    | _*    | 27  | 63.0             | 3.7       | _*   | _*    |
| Ceftazidime                             | 31    | 19.4 | 3.2      | _*    | _*    | 28  | 3.6              | 3.6       | _*   | _*    |
| Cefepime                                | 21    | 9.5  | 4.8      | _*    | _*    | 19  | 0.0              | 10.5      | _*   | _*    |
| Gentamicin                              | 38    | 0.0  | 2.6      | _†    | 2.6   | 29  | 0.0              | 3.4       | _†   | 3.4   |
| Tobramycin                              | 38    | 0.0  | 2.6      | _†    | 2.6   | 28  | 0.0              | 3.6       | _†   | 3.6   |
| Amikacin                                | 34    | 0.0  | 0.0      | _†    | 0.0   | 18  | 0.0              | 5.6       | _†   | 11.1  |
| Ciprofloxacin                           | 38    | 0.0  | 5.3      | 94.7  | 5.3   | 27  | 0.0              | 3.7       | 96.3 | 3.7   |
| Meropenem                               | 38    | 0.0  | 2.6      | 0.0   | 2.6   | 29  | 0.0              | 3.4       | 0.0  | 3.4   |
| Enterobacter cloacae complex            |       |      |          |       |       |     |                  |           |      |       |
| Piperacillin-tazobactam                 | 246   | 5.3  | 11.8     | _†    | 20.7  | 224 | 6.3              | 25.4      | _†   | 34.4  |
| Ceftriaxone                             | 249   | 0.4  | 23.7     | 0.4   | 23.7  | 226 | 0.4              | 33.6      | 0.4  | 33.6  |
| Ceftazidime                             | 249   | 1.2  | 17.3     | 5.2   | 18.5  | 226 | 0.9              | 30.5      | 1.8  | 31.4  |
| Cefepime                                | 249   | 2.4§ | 1.2      | 7.2   | 1.6   | 226 | 4.9 <sup>§</sup> | 2.7       | 10.2 | 5.3   |
| Gentamicin                              | 249   | 0.0  | 4.0      | _†    | 4.8   | 224 | 0.0              | 7.1       | _†   | 7.6   |
| Tobramycin                              | 242   | 2.5  | 2.5      | _†    | 5.4   | 223 | 2.2              | 4.9       | _†   | 8.1   |
| Amikacin                                | 249   | 0.8  | 0.0      | _†    | 0.8   | 225 | 0.0              | 0.0       | _†   | 0.4   |
| Ciprofloxacin                           | 249   | 1.2  | 3.2      | 1.2   | 3.2   | 226 | 0.9              | 7.5       | 0.9  | 7.5   |
| Meropenem                               | 249   | 0.0  | 0.8      | 0.0   | 0.8   | 226 | 0.4              | 4.4       | 0.9  | 3.5   |
| Escherichia coli                        |       |      |          |       |       |     |                  |           |      |       |
| Ampicillin                              | 4,338 | 1.5  | 48.1     | _†    | 49.6  | 919 | 1.4              | 58.8      | _†   | 60.2  |
| Amoxicillin-clavulanic acid (2:1 ratio) | 3,782 | 9.5  | 7.0      | _*    | _*    | 785 | 11.6             | 9.2       | _*   | _*    |
| Piperacillin-tazobactam                 | 4,323 | 2.2  | 1.8      | _†    | 4.9   | 920 | 2.9              | 7.4       | _†   | 10.7  |
| Cefazolin                               | 3,803 | _*   | 21.1     | 78.9  | 21.1  | 791 | _*               | 27.6      | 72.4 | 27.6  |
| Cefuroxime                              | 489   | 2.0  | 14.9     | 83.0  | 17.0  | 122 | 0.0              | 22.1      | 77.9 | 22.1  |
| Ceftriaxone                             | 4,340 | 0.1  | 12.1     | 0.1   | 12.1  | 921 | 0.1              | 15.2      | 0.1  | 15.2  |
| Ceftazidime                             | 4,340 | 0.9  | 4.6      | 7.1   | 5.6   | 921 | 0.7              | 6.7       | 8.3  | 7.4   |
| Cefepime                                | 4,340 | 2.0§ | 1.9      | 6.3   | 2.8   | 921 | 2.3§             | 3.3       | 7.6  | 4.5   |
| Gentamicin                              | 4,338 | 0.0  | 7.5      | _†    | 7.9   | 921 | 0.2              | 9.6       | _†   | 10.3  |
| Tobramycin                              | 4,316 | 5.5  | 2.3      | _†    | 8.2   | 917 | 6.9              | 2.9       | _†   | 10.6  |
| Amikacin                                | 4,339 | 0.1  | 0.0      | _†    | 0.9   | 921 | 0.0              | 0.0       | _†   | 1.1   |
| Ciprofloxacin                           | 4,338 | 3.6  | 12.8     | 3.6   | 12.8  | 921 | 4.6              | 17.8      | 4.6  | 17.8  |
| Meropenem                               | 4,339 | 0.0  | 0.1      | 0.0   | 0.0   | 921 | 0.1              | 0.3       | 0.1  | 0.2   |
| Klebsiella aerogenes                    |       |      |          |       |       |     |                  |           |      |       |
| Piperacillin-tazobactam                 | 78    | 9.0  | 16.7     | _†    | 33.3  | 51  | 11.8             | 27.5      | _†   | 43.1  |
| Ceftriaxone                             | 78    | 1.3  | 29.5     | 1.3   | 29.5  | 51  | 0.0              | 39.2      | 0.0  | 39.2  |
| Ceftazidime                             | 78    | 3.8  | 25.6     | 6.4   | 29.5  | 51  | 2.0              | 37.3      | 0.0  | 39.2  |

|                                         |     | Comr             | nunity-o | onset     |       |     | Но               | spital-on      | set  |       |
|-----------------------------------------|-----|------------------|----------|-----------|-------|-----|------------------|----------------|------|-------|
|                                         |     | CLS              | SI, %    | EUCA      | ST, % |     | CLS              | 6 <b>I</b> , % | EUCA | ST, % |
| Species and antimicrobial               | No. |                  | R        | S-IE      | R     | No. |                  | R              | S-IE | R     |
| Cefepime                                | 78  | 1.3 <sup>§</sup> | 0.0      | 2.6       | 0.0   | 51  | 3.9 <sup>§</sup> | 0.0            | 3.9  | 3.9   |
| Gentamicin                              | 78  | 0.0              | 2.6      | _†        | 2.6   | 51  | 0.0              | 2.0            | _†   | 2.0   |
| Tobramycin                              | 78  | 2.6              | 0.0      | _†        | 2.6   | 51  | 2.0              | 0.0            | _†   | 2.0   |
| Amikacin                                | 78  | 0.0              | 0.0      | _†        | 0.0   | 51  | 0.0              | 0.0            | _†   | 0.0   |
| Ciprofloxacin                           | 78  | 1.3              | 2.6      | 1.3       | 2.6   | 51  | 0.0              | 3.9            | 0.0  | 3.9   |
| Meropenem                               | 78  | 0.0              | 0.0      | 0.0       | 0.0   | 51  | 0.0              | 5.9            | 3.9  | 2.0   |
| Klebsiella oxytoca                      |     |                  |          |           |       |     |                  |                |      |       |
| Amoxicillin–clavulanic acid (2:1 ratio) | 168 | 3.6              | 4.8      | _*        | _*    | 90  | 5.6              | 12.2           | _*   | _*    |
| Piperacillin-tazobactam                 | 196 | 1.0              | 5.6      | _†        | 7.7   | 99  | 3.0              | 13.1           | _†   | 19.2  |
| Cefuroxime                              | 26  | 0.0              | 0.0      | 100.<br>0 | 0.0   | 9   | n/a              | n/a            | n/a  | n/a   |
| Ceftriaxone                             | 196 | 0.0              | 5.1      | 0.0       | 5.1   | 100 | 1.0              | 7.0            | 1.0  | 7.0   |
| Ceftazidime                             | 196 | 0.0              | 0.0      | 0.0       | 0.0   | 100 | 1.0              | 1.0            | 1.0  | 2.0   |
| Cefepime                                | 196 | 0.0§             | 0.0      | 0.5       | 0.0   | 100 | 0.0§             | 1.0            | 1.0  | 1.0   |
| Gentamicin                              | 196 | 0.0              | 0.5      | _†        | 0.5   | 101 | 0.0              | 2.0            | _†   | 2.0   |
| Tobramycin                              | 196 | 0.5              | 0.0      | _†        | 0.5   | 100 | 2.0              | 0.0            | _†   | 2.0   |
| Amikacin                                | 196 | 0.0              | 0.0      | _†        | 0.0   | 100 | 0.0              | 0.0            | _†   | 0.0   |
| Ciprofloxacin                           | 196 | 0.5              | 0.5      | 0.5       | 0.5   | 101 | 0.0              | 1.0            | 0.0  | 1.0   |
| Meropenem                               | 196 | 0.0              | 0.0      | 0.0       | 0.0   | 99  | 0.0              | 2.0            | 2.0  | 0.0   |
| Klebsiella pneumoniae complex           |     |                  |          |           |       |     |                  |                |      |       |
| Amoxicillin–clavulanic acid (2:1 ratio) | 859 | 3.7              | 2.0      | _*        | _*    | 371 | 6.7              | 5.9            | _*   | _*    |
| Piperacillin–tazobactam                 | 962 | 1.0              | 1.5      | _†        | 6.3   | 424 | 1.9              | 6.1            | _†   | 14.2  |
| Cefazolin                               | 860 | _*               | 7.6      | 92.4      | 7.6   | 375 | _*               | 16.0           | 84.0 | 16.0  |
| Cefuroxime                              | 91  | 1.1              | 5.5      | 93.4      | 6.6   | 47  | 10.6             | 6.4            | 83.0 | 17.0  |
| Ceftriaxone                             | 966 | 0.1              | 4.8      | 0.1       | 4.8   | 426 | 0.0              | 10.8           | 0.0  | 10.8  |
| Ceftazidime                             | 966 | 0.7              | 2.9      | 1.6       | 3.6   | 426 | 1.4              | 7.7            | 2.6  | 9.2   |
| Cefepime                                | 966 | 0.8§             | 1.7      | 2.0       | 2.1   | 426 | 1.2 <sup>§</sup> | 1.9            | 6.3  | 2.6   |
| Gentamicin                              | 966 | 0.2              | 2.6      | _†        | 2.8   | 426 | 0.7              | 4.0            | _†   | 4.7   |
| Tobramycin                              | 961 | 2.1              | 1.0      | _†        | 3.1   | 422 | 3.8              | 2.4            | _†   | 6.4   |
| Amikacin                                | 966 | 0.0              | 0.1      | _†        | 0.1   | 426 | 0.0              | 0.0            | _†   | 0.5   |
| Ciprofloxacin                           | 965 | 1.8              | 6.3      | 1.8       | 6.3   | 426 | 2.8              | 11.3           | 2.8  | 11.3  |
| Meropenem                               | 966 | 0.2              | 0.6      | 0.1       | 0.5   | 426 | 0.2              | 0.5            | 0.0  | 0.5   |
| Proteus mirabilis                       |     |                  |          |           |       |     |                  |                |      |       |
| Ampicillin                              | 266 | 0.4              | 16.2     | _†        | 16.5  | 57  | 1.8              | 14.0           | _†   | 15.8  |
| Amoxicillin–clavulanic acid (2:1 ratio) | 227 | 5.7              | 3.5      | _*        | _*    | 51  | 5.9              | 2.0            | _*   | _*    |
| Piperacillin-tazobactam                 | 265 | 0.0              | 0.0      | _†        | 0.0   | 57  | 0.0              | 0.0            | _†   | 0.0   |
| Cefuroxime                              | 38  | 0.0              | 5.3      | 94.7      | 5.3   | 6   | n/a              | n/a            | n/a  | n/a   |
| Ceftriaxone                             | 266 | 0.4              | 1.1      | 0.4       | 1.1   | 57  | 1.8              | 1.8            | 1.8  | 1.8   |
| Ceftazidime                             | 266 | 0.4              | 0.8      | 0.8       | 1.1   | 57  | 0.0              | 0.0            | 0.0  | 0.0   |
| Cefepime                                | 266 | 0.4§             | 0.8      | 0.4       | 0.8   | 57  | 1.8 <sup>§</sup> | 0.0            | 3.5  | 0.0   |
| Gentamicin                              | 266 | 1.1              | 2.3      | _†        | 4.9   | 57  | 1.8              | 0.0            | _†   | 5.3   |
| Tobramycin                              | 266 | 1.1              | 2.3      | _†        | 4.1   | 57  | 1.8              | 0.0            | _†   | 1.8   |
| Amikacin                                | 266 | 0.0              | 0.4      | _†        | 1.9   | 57  | 0.0              | 0.0            | _†   | 0.0   |
| Ciprofloxacin                           | 266 | 0.8              | 4.9      | 0.8       | 4.9   | 57  | 0.0              | 0.0            | 0.0  | 0.0   |

|                                         |     | Comn             | nunity-o | onset |       |     | Hos              | spital-or | nset |       |
|-----------------------------------------|-----|------------------|----------|-------|-------|-----|------------------|-----------|------|-------|
|                                         |     | CLS              | SI, %    | EUCA  | ST, % |     | CLS              | si, %     | EUCA | ST, % |
| Species and antimicrobial               | No. | I                | R        | S-IE  | R     | No. | I                | R         | S-IE | R     |
| Meropenem                               | 266 | 0.0              | 0.0      | 0.0   | 0.0   | 57  | 0.0              | 0.0       | 0.0  | 0.0   |
| Pseudomonas aeruginosa                  |     |                  |          |       |       |     |                  |           |      |       |
| Piperacillin-tazobactam                 | 468 | 6.6              | 4.1      | 89.3  | 10.7  | 364 | 11.0             | 8.8       | 80.2 | 19.8  |
| Ceftazidime                             | 471 | 3.4              | 3.0      | 93.6  | 6.4   | 366 | 8.2              | 7.9       | 83.9 | 16.1  |
| Cefepime                                | 472 | 1.9              | 1.5      | 96.6  | 3.4   | 366 | 5.2              | 4.6       | 90.2 | 9.8   |
| Tobramycin                              | 470 | 0.2              | 0.2      | _†    | 0.4   | 357 | 0.3              | 0.6       | _†   | 1.1   |
| Amikacin                                | 471 | 0.2              | 0.0      | _†    | 0.2   | 365 | 0.3              | 0.5       | _†   | 0.8   |
| Ciprofloxacin                           | 472 | 3.6              | 3.6      | 92.8  | 7.2   | 364 | 8.5              | 5.2       | 86.3 | 13.7  |
| Meropenem                               | 471 | 5.1              | 2.1      | 6.2   | 1.1   | 365 | 3.8              | 10.7      | 6.0  | 8.5   |
| Salmonella species (non-<br>typhoidal)  |     |                  |          |       |       |     |                  |           |      |       |
| Ampicillin                              | 89  | 0.0              | 5.6      | _†    | 5.6   | 7   | n/a              | n/a       | _†   | n/a   |
| Amoxicillin–clavulanic acid (2:1 ratio) | 81  | 1.2              | 0.0      | _*    | _*    | 6   | n/a              | n/a       | _*   | _*    |
| Piperacillin-tazobactam                 | 89  | 0.0              | 0.0      | _†    | 0.0   | 7   | n/a              | n/a       | _†   | n/a   |
| Ceftriaxone                             | 89  | 0.0              | 3.4      | 0.0   | 3.4   | 7   | n/a              | n/a       | n/a  | n/a   |
| Ceftazidime                             | 89  | 0.0              | 3.4      | 0.0   | 3.4   | 7   | n/a              | n/a       | n/a  | n/a   |
| Cefepime                                | 89  | 1.1 <sup>§</sup> | 1.1      | 2.2   | 1.1   | 7   | n/a              | n/a       | n/a  | n/a   |
| Ciprofloxacin**                         | 89  | 3.4              | 11.2     | _†    | 14.6  | 8   | n/a              | n/a       | _†   | n/a   |
| Meropenem                               | 89  | 0.0              | 0.0      | 0.0   | 0.0   | 7   | n/a              | n/a       | n/a  | n/a   |
| Serratia marcescens                     |     |                  |          |       |       |     |                  |           |      |       |
| Piperacillin-tazobactam                 | 85  | 1.2              | 0.0      | _†    | 1.2   | 127 | 0.8              | 0.0       | _†   | 0.8   |
| Ceftriaxone                             | 114 | 0.0              | 3.5      | 0.0   | 3.5   | 143 | 0.7              | 2.8       | 0.7  | 2.8   |
| Ceftazidime                             | 114 | 0.9              | 1.8      | 0.9   | 2.6   | 143 | 0.0              | 1.4       | 0.0  | 1.4   |
| Cefepime                                | 114 | 0.0§             | 0.9      | 0.9   | 0.9   | 143 | 0.7 <sup>§</sup> | 0.7       | 0.0  | 1.4   |
| Gentamicin                              | 114 | 0.0              | 1.8      | _†    | 1.8   | 143 | 0.0              | 2.1       | _†   | 2.8   |
| Tobramycin                              | 113 | 15.9             | 0.9      | _†    | 30.1  | 142 | 16.2             | 1.4       | _†   | 32.4  |
| Amikacin                                | 114 | 0.0              | 0.0      | _†    | 0.0   | 143 | 0.0              | 0.0       | _†   | 0.0   |
| Ciprofloxacin                           | 114 | 0.9              | 3.5      | 0.9   | 3.5   | 143 | 2.1              | 1.4       | 2.1  | 1.4   |
| Meropenem                               | 114 | 0.0              | 1.8      | 0.9   | 0.9   | 143 | 0.0              | 1.4       | 0.7  | 0.7   |

CLSI = Clinical and Laboratory Standards Institute; EUCAST = European Committee on Antimicrobial Susceptibility Testing; I = intermediate; R = resistant; S-IE = susceptible, increased exposure; n/a = not applicable, insufficient numbers (<10) to calculate percentage; No. = number of isolates

No guidelines for indicated species \*

t

No category defined Includes sensitive, dose dependent category for CLSI § #

The cefazolin concentration range available on the Vitek card used restricts the ability to accurately identify susceptible and intermediate (CLSI) categories \*\*

The ciprofloxacin concentration range available on the Vitek® card used restricts the ability to accurately identify susceptible (CLSI/EUCAST) and intermediate (CLSI) categories for Salmonella species. Results of gradient test strips or perfloxacin 5 µg disc when available, were provided

## 3.8. Multi-drug resistance

The most problematic pathogens are those with multiple acquired resistances. The definitions proposed by Magiorakos et al.<sup>5</sup>, where multi-drug resistance was defined as resistance to one or more agent in three or more antimicrobial categories, were applied in this survey. Antimicrobials were excluded from the count if natural resistance mechanisms are present in that species.

Only isolates for which the full range of antimicrobial categories was tested were included for determination of multi-drug resistance. EUCAST breakpoints were primarily used in the analysis.

Multiple acquired resistances for key species are shown in Tables 9 to 12. The agents included for each species are listed in the notes after each table. For other common species, refer to Appendix D.

| State or  |       | Ν   | lumber of c<br>(non-N |    |      | Number of categories<br>(MDR) |    |   |   |      |  |  |
|-----------|-------|-----|-----------------------|----|------|-------------------------------|----|---|---|------|--|--|
| territory | Total | 0   | 1                     | 2  | %    | 3                             | 4  | 5 | 6 | %    |  |  |
| NSW       | 169   | 90  | 16                    | 42 | 87.6 | 6                             | 9  | 3 | 3 | 12.4 |  |  |
| Vic       | 97    | 61  | 8                     | 21 | 92.8 | 3                             | 2  | 1 | 1 | 7.2  |  |  |
| Qld       | 86    | 49  | 17                    | 16 | 95.3 | 0                             | 2  | 1 | 1 | 4.7  |  |  |
| SA        | 22    | 10  | 2                     | 8  | _*   | 0                             | 1  | 1 | 0 | _*   |  |  |
| WA        | 51    | 43  | 3                     | 3  | 96.1 | 2                             | 0  | 0 | 0 | 3.9  |  |  |
| Tas       | 17    | 12  | 0                     | 4  | _*   | 1                             | 0  | 0 | 0 | _*   |  |  |
| NT        | 9     | 3   | 2                     | 3  | _*   | 0                             | 0  | 1 | 0 | _*   |  |  |
| ACT       | 16    | 11  | 2                     | 2  | _*   | 0                             | 1  | 0 | 0 | _*   |  |  |
| Total     | 467   | 279 | 50                    | 99 | 91.6 | 12                            | 15 | 7 | 5 | 8.4  |  |  |

Table 9: Multiple acquired resistance in Enterobacter cloacae complex, by state and territory, AGAR, 2022

MDR = multi-drug resistant; resistant to one or more agent in three or more antimicrobial categories; n/a = not applicable, insufficient numbers (<30) to calculate percentage

Notes:

 Antimicrobial categories (agents) are aminoglycosides (gentamicin or tobramycin), antipseudomonal penicillins + β-lactamase inhibitor (piperacillin–tazobactam), carbapenems (meropenem), extended-spectrum cephalosporins (ceftriaxone or ceftazidime), fluoroquinolones (ciprofloxacin), and folate pathway inhibitors (trimethoprim–sulfamethoxazole).

2. Enterobacter cloacae complex includes E. bugandensis (n = 5), E. asburiae (n = 4), E. hormaechei (n = 4), and E. ludwigii (n = 1).

#### Table 10: Multiple acquired resistance in Escherichia coli, by state and territory, AGAR, 2022

| State or  |       |      |     |     |      |     | Number of categories<br>(MDR) |     |     |    |    |   |      |  |
|-----------|-------|------|-----|-----|------|-----|-------------------------------|-----|-----|----|----|---|------|--|
| territory | Total | 0    | 1   | 2   | %    | 3   | 4                             | 5   | 6   | 7  | 8  | 9 | %    |  |
| NSW       | 1,738 | 758  | 291 | 239 | 74.1 | 135 | 139                           | 114 | 36  | 19 | 7  | 0 | 25.9 |  |
| Vic       | 1,051 | 475  | 209 | 144 | 78.8 | 87  | 57                            | 53  | 18  | 6  | 1  | 1 | 21.2 |  |
| Qld       | 706   | 327  | 131 | 107 | 80.0 | 43  | 39                            | 44  | 8   | 6  | 1  | 0 | 20.0 |  |
| SA        | 435   | 188  | 80  | 75  | 78.9 | 29  | 26                            | 25  | 5   | 5  | 2  | 0 | 21.1 |  |
| WA        | 692   | 267  | 126 | 128 | 75.3 | 56  | 58                            | 28  | 22  | 5  | 2  | 0 | 24.7 |  |
| Tas       | 200   | 118  | 35  | 28  | 90.5 | 9   | 5                             | 4   | 1   | 0  | 0  | 0 | 9.5  |  |
| NT        | 169   | 46   | 16  | 34  | 56.8 | 21  | 17                            | 25  | 8   | 2  | 0  | 0 | 43.2 |  |
| ACT       | 190   | 83   | 35  | 27  | 76.3 | 20  | 11                            | 11  | 2   | 1  | 0  | 0 | 23.7 |  |
| Total     | 5,181 | 2262 | 923 | 782 | 76.6 | 400 | 352                           | 304 | 100 | 44 | 13 | 1 | 23.4 |  |

MDR = multi-drug resistant; resistant to one or more agent in three or more antimicrobial categories

Note: Antimicrobial categories (agents) are aminoglycosides (gentamicin or tobramycin), antipseudomonal penicillins + β-lactamase inhibitor (piperacillin–tazobactam), carbapenems (meropenem), extended-spectrum cephalosporins (ceftriaxone or ceftazidime), cephamycins (cefoxitin), fluoroquinolones (ciprofloxacin), folate pathway inhibitors (trimethoprim–sulfamethoxazole), non-extended-spectrum cephalosporins (cefazolin or cefuroxime), and penicillins (ampicillin).

| Table 11: Multiple acquired resistance in <i>Klebsiella pneumoniae</i> complex isolates, by state and territory, |
|------------------------------------------------------------------------------------------------------------------|
| AGAR, 2022                                                                                                       |

| State or  |       | Νι   | imber of<br>(non- | categor<br>MDR) | ies  |    |    | Numb | er of cate<br>(MDR) | gories |   |      |
|-----------|-------|------|-------------------|-----------------|------|----|----|------|---------------------|--------|---|------|
| territory | Total | 0    | 1                 | 2               | %    | 3  | 4  | 5    | 6                   | 7      | 8 | %    |
| NSW       | 429   | 324  | 35                | 29              | 90.4 | 13 | 9  | 6    | 10                  | 3      | 0 | 9.6  |
| Vic       | 282   | 220  | 23                | 21              | 93.6 | 7  | 5  | 0    | 3                   | 1      | 2 | 6.4  |
| Qld       | 225   | 175  | 26                | 12              | 94.7 | 5  | 2  | 2    | 2                   | 0      | 1 | 5.3  |
| SA        | 82    | 67   | 7                 | 3               | 93.9 | 2  | 2  | 1    | 0                   | 0      | 0 | 6.1  |
| WA        | 212   | 175  | 7                 | 17              | 93.9 | 3  | 5  | 1    | 4                   | 0      | 0 | 6.1  |
| Tas       | 43    | 38   | 0                 | 0               | 88.4 | 1  | 3  | 1    | 0                   | 0      | 0 | 11.6 |
| NT        | 51    | 33   | 3                 | 4               | 78.4 | 2  | 2  | 2    | 4                   | 0      | 1 | 21.6 |
| ACT       | 42    | 34   | 4                 | 0               | 90.5 | 0  | 1  | 1    | 1                   | 1      | 0 | 9.5  |
| Total     | 1,366 | 1066 | 105               | 86              | 92.0 | 33 | 29 | 14   | 24                  | 5      | 4 | 8.0  |

MDR = multi-drug resistant; resistant to one or more agent in three or more antimicrobial categories

#### Notes:

 Antimicrobial categories (agents) are aminoglycosides (gentamicin or tobramycin), antipseudomonal penicillins + β-lactamase inhibitor (piperacillin–tazobactam), carbapenems (meropenem), extended-spectrum cephalosporins (ceftriaxone or ceftazidime), cephamycins (cefoxitin), fluoroquinolones (ciprofloxacin), folate pathway inhibitors (trimethoprim–sulfamethoxazole), and nonextended-spectrum cephalosporins (cefazolin or cefuroxime).

2. Klebsiella pneumoniae complex includes K. variicola (n = 116) and K. quasipneumoniae (n = 3).

#### Table 12: Multiple acquired resistance in Pseudomonas aeruginosa, by state and territory, AGAR, 2022

| State or territory |       | Number of categories<br>(non- MDR) |    |    |       |    |    | Number of categories<br>(MDR) |     |  |  |  |
|--------------------|-------|------------------------------------|----|----|-------|----|----|-------------------------------|-----|--|--|--|
|                    | Total | 0                                  | 1  | 2  | %     | 3  | 4  | 5                             | %   |  |  |  |
| NSW                | 258   | 199                                | 27 | 24 | 96.9  | 5  | 2  | 1                             | 3.1 |  |  |  |
| Vic                | 146   | 106                                | 13 | 13 | 90.4  | 9  | 5  | 0                             | 9.6 |  |  |  |
| Qld                | 152   | 122                                | 15 | 12 | 98.0  | 0  | 2  | 1                             | 2.0 |  |  |  |
| SA                 | 76    | 57                                 | 5  | 9  | 93.4  | 2  | 3  | 0                             | 6.6 |  |  |  |
| WA                 | 111   | 99                                 | 5  | 4  | 97.3  | 1  | 2  | 0                             | 2.7 |  |  |  |
| Tas                | 34    | 26                                 | 5  | 1  | 94.1  | 1  | 1  | 0                             | 5.9 |  |  |  |
| NT                 | 13    | 11                                 | 1  | 1  | _*    | 0  | 0  | 0                             | _*  |  |  |  |
| ACT                | 30    | 27                                 | 2  | 1  | 100.0 | 0  | 0  | 0                             | 0.0 |  |  |  |
| Total              | 820   | 647                                | 73 | 65 | 95.7  | 18 | 15 | 2                             | 4.3 |  |  |  |

MDR = multi-drug resistant; resistant to one or more agent in three or more antimicrobial categories; n/a = not applicable, insufficient numbers (<30) to calculate percentage

Note: Antimicrobial categories (agents) are aminoglycosides (tobramycin), antipseudomonal penicillins + β-lactamase inhibitor (piperacillin–tazobactam), carbapenems (meropenem), extended-spectrum cephalosporins (ceftazidime), fluoroquinolones (ciprofloxacin)

Nationally, 53.8% of all *E. coli* isolates were resistant to at least one of five key antimicrobial groups (aminopenicillins, fluoroquinolones, third-generation cephalosporins, aminoglycosides and carbapenems; Table 13). For *K. pneumoniae* complex isolates, 10.9% were resistant to at least one antimicrobial group (fluoroquinolones, third-generation cephalosporins, aminoglycosides and carbapenems; Table 14). For *P. aeruginosa,* 21.1% were resistant to at least one antimicrobial group (piperacillin-tazobactam, fluoroquinolones, ceftazidime, aminoglycosides and carbapenems; Table 15).

**Table 13:** Resistance combinations among *Escherichia coli* tested against aminopenicillins,fluoroquinolones, third-generation cephalosporins, aminoglycosides and carbapenems, Australia, AGAR,2022

| Resistance pattern                                                                                    | Number | % of total* |
|-------------------------------------------------------------------------------------------------------|--------|-------------|
| Fully susceptible                                                                                     | 2,425  | 46.2        |
| Single resistance                                                                                     | 1,801  | 34.3        |
| Aminopenicillins                                                                                      | 1,677  | 31.9        |
| Fluoroquinolones                                                                                      | 107    | 2.0         |
| Aminoglycosides                                                                                       | 16     | 0.3         |
| Third-generation cephalosporins                                                                       | 1      | 0.0         |
| Resistance to two antimicrobial groups                                                                | 456    | 8.7         |
| Aminopenicillins + third-generation cephalosporins                                                    | 217    | 4.1         |
| Aminopenicillins + fluoroquinolones                                                                   | 143    | 2.7         |
| Aminopenicillins + aminoglycosides                                                                    | 96     | 1.8         |
| Resistance to three antimicrobial groups                                                              | 420    | 8.0         |
| Aminopenicillins + third-generation cephalosporins + fluoroquinolones                                 | 214    | 4.1         |
| Aminopenicillins + third-generation cephalosporins + aminoglycosides                                  | 104    | 2.0         |
| Aminopenicillins + fluoroquinolones + aminoglycosides                                                 | 102    | 1.9         |
| Resistance to four antimicrobial groups                                                               | 150    | 2.9         |
| Aminopenicillins + third-generation cephalosporins + fluoroquinolones + aminoglycosides               | 148    | 2.8         |
| Aminopenicillins + third-generation cephalosporins + fluoroquinolones + carbapenems                   | 2      | <0.1        |
| Resistance to five antimicrobial groups                                                               | 2      | <0.1        |
| Aminopenicillins + third-generation cephalosporins + fluoroquinolones + aminoglycosides + carbapenems | 2      | <0.1        |

Note: Only data from isolates tested against all five antimicrobial groups are included (n = 5,254).

Table 14: Resistance combinations among Klebsiella pneumoniae complex tested against fluoroquinolones, third-generation cephalosporins, aminoglycosides and carbapenems, Australia, AGAR, 2022

| Resistance pattern                                                                 | Number | % of total |
|------------------------------------------------------------------------------------|--------|------------|
| Fully susceptible                                                                  | 1,240  | 89.1       |
| Single resistance                                                                  | 72     | 5.2        |
| Fluoroquinolones                                                                   | 40     | 2.9        |
| Third-generation cephalosporins                                                    | 23     | 1.7        |
| Aminoglycosides                                                                    | 9      | 0.6        |
| Resistance to two antimicrobial groups                                             | 41     | 2.9        |
| Third-generation cephalosporins + fluoroquinolones                                 | 26     | 1.9        |
| Third-generation cephalosporins + aminoglycosides                                  | 9      | 0.6        |
| Fluoroquinolones + aminoglycosides                                                 | 6      | 0.4        |
| Resistance to three antimicrobial groups                                           | 32     | 2.3        |
| Third-generation cephalosporins + fluoroquinolones + aminoglycosides               | 31     | 2.2        |
| Third-generation cephalosporins + aminoglycosides + carbapenems                    | 1      | <0.1       |
| Resistance to four antimicrobial groups                                            | 0      | 0.0        |
| Third-generation cephalosporins + fluoroquinolones + aminoglycosides + carbapenems | 6      | 0.4        |

Notes:

Only data from isolates tested against all four antimicrobial groups are included (n = 1,391).
 Klebsiella pneumoniae complex includes K. variicola (n = 121) and K. quasipneumoniae (n = 3).

Table 15: Resistance combinations among Pseudomonas aeruginosa tested against piperacillintazobactam, ceftazidime, fluoroquinolones, aminoglycosides and carbapenems, Australia, AGAR, 2022

| Resistance pattern                                                                       | Number | % of total |
|------------------------------------------------------------------------------------------|--------|------------|
| Fully susceptible                                                                        | 647    | 78.9       |
| Single resistance                                                                        | 73     | 8.9        |
| Fluoroquinolones                                                                         | 39     | 4.8        |
| Piperacillin-tazobactam                                                                  | 26     | 3.2        |
| Ceftazidime                                                                              | 5      | 0.6        |
| Carbapemems                                                                              | 3      | 0.4        |
| Resistance to two antimicrobial groups                                                   | 65     | 7.9        |
| Piperacillin-tazobactam + ceftazidime                                                    | 47     | 5.7        |
| Piperacillin-tazobactam + fluoroquinolones                                               | 10     | 1.2        |
| Fluoroquinolones + carbapenems                                                           | 3      | 0.4        |
| Ceftazidime + carbapenems                                                                | 2      | 0.2        |
| Aminoglycosides + carbapenems                                                            | 1      | 0.1        |
| Ceftazidime + fluoroquinolones                                                           | 1      | 0.1        |
| Piperacillin-tazobactam + carbapenems                                                    | 1      | 0.1        |
| Resistance to three antimicrobial groups                                                 | 18     | 2.2        |
| Piperacillin-tazobactam + ceftazidime + fluoroquinolones                                 | 8      | 1.0        |
| Piperacillin-tazobactam + ceftazidime + carbapenems                                      | 5      | 0.6        |
| Piperacillin-tazobactam + fluoroquinolones + carbapenems                                 | 4      | 0.5        |
| Piperacillin-tazobactam + fluoroquinolones + aminoglycosides                             | 1      | 0.1        |
| Resistance to four antimicrobial groups                                                  | 15     | 1.8        |
| Piperacillin-tazobactam + ceftazidime + aminoglycosides + carbapenems                    | 13     | 1.6        |
| Piperacillin-tazobactam + ceftazidime + fluoroquinolones + carbapenems                   | 2      | 0.2        |
| Resistance to five antimicrobial groups                                                  | 2      | 0.2        |
| Piperacillin-tazobactam + ceftazidime + fluoroquinolones + aminoglycosides + carbapenems | 2      | 0.2        |

Note: Only data from isolates tested against all five antimicrobial groups are included (n = 820).

#### Multi-drug resistance by onset setting and 30-day all-cause mortality

Multi-drug resistances by onset setting (community or hospital) and 30-day all-cause mortality for the most common species are shown in Table 16.

There was no significant association between multidrug resistance and 30-day all-cause mortality or onset setting.

|                         |              | Т      | otal             | Commu  | nity onset      | Hospital onset |                  |  |
|-------------------------|--------------|--------|------------------|--------|-----------------|----------------|------------------|--|
| Species                 | Category     | Number | Deaths, %<br>(n) | Number | Deaths,%<br>(n) | Number         | Deaths, %<br>(n) |  |
| Escherichia coli        | Total        | 3,619  | 11.5 (415)       | 2,939  | 11.1 (325)      | 680            | 13.2 (90)        |  |
|                         | Non-MDR (≤2) | 2,765  | 11.0 (305)       | 2,286  | 10.6 (243)      | 479            | 12.9 (62)        |  |
|                         | MDR (>2)     | 854    | 12.9 (110)       | 653    | 12.6 (82)       | 201            | 13.9 (28)        |  |
| Enterobacter            | Total        | 360    | 12.5 (45)        | 184    | 9.8 (18)        | 176            | 15.3 (27)        |  |
| <i>cloacae</i> complex  | Non-MDR (≤2) | 330    | 12.1 (40)        | 174    | 10.3 (18)       | 156            | 14.1 (22)        |  |
|                         | MDR (>2)     | 30     | 16.7 (5)         | 10     | 0.0 (0)         | 20             | 25.0 (5)         |  |
| Klebsiella <sub>.</sub> | Total        | 1,001  | 12.8 (128)       | 688    | 12.2 (84)       | 313            | 14.1 (44)        |  |
| pneumoniae<br>complex   | Non-MDR (≤2) | 922    | 12.9 (119)       | 648    | 11.9 (77)       | 274            | 15.3 (42)        |  |
| complex                 | MDR (>2)     | 79     | 11.4 (9)         | 40     | 17.5 (7)        | 39             | 5.1 (2)          |  |
| Pseudomonas             | Total        | 611    | 18.5 (113)       | 343    | 18.7 (64)       | 268            | 18.3 (49)        |  |
| aeruginosa              | Non-MDR (≤2) | 581    | 18.4 (107)       | 337    | 18.7 (63)       | 244            | 18.0 (44)        |  |
|                         | MDR (>2)     | 30     | 20.0 (6)         | 6      | 16.7 (1)        | 24             | 20.8 (5)         |  |

Table 16: Multi-drug resistance, by onset setting and 30-day all-cause mortality, AGAR, 2022

MDR = multi-drug resistant; resistant to one or more agent in three or more antimicrobial categories. The agents included for each species are listed in the notes after each table (Tables 9-12)

Note: Enterobacter cloacae complex includes E. bugandensis (n = 5), E. asburiae (n = 4), E. hormaechei (n = 3), and E. ludwigii (n = 1). Klebsiella pneumoniae complex includes K. variicola (n = 93) and K. quasipneumoniae (n = 3).

### 3.9. Whole genome sequencing

This section describes the resistance mechanisms of gram-negative organisms identified by WGS. The benefits of this method include increased accuracy in detecting the genetic mechanisms for AMR and clarifying the underlining epidemiology.

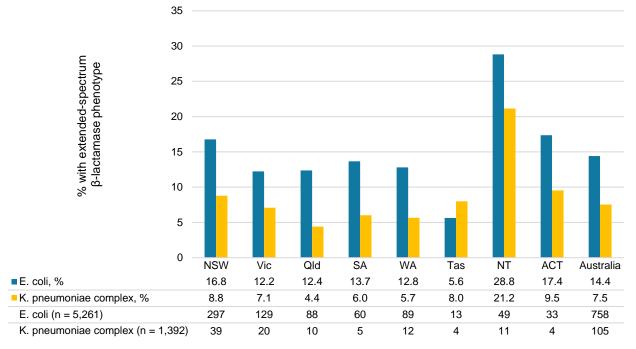
All referred gram-negative isolates were sequenced and analysed for antimicrobial resistance mechanisms.

#### **3.9.1.Extended-spectrum β-lactamases**

Gram-negative organisms carrying ESBL genes are important internationally, especially in hospital practice. Initially, ESBLs were more common in *Klebsiella* species than in *E. coli*. The emergence of specific types of ESBLs (CTX-M enzymes) in *E. coli* from the community is part of a global epidemic.<sup>6-8</sup> It is unclear what is driving the community expansion of CTX-M ESBLs in Australia, as third-generation cephalosporins are not widely used in that setting; it is thought to be driven by cross-resistance and co-resistance to agents used in community practice. There is also increasing recognition that ESBLs are becoming established in long-term care facilities in Australia.<sup>9</sup>

ESBLs are important because they compromise the efficacy of third-generation cephalosporins, which have been an important therapeutic alternative for infections in patients presenting from the community. ESBL-producing isolates often have co-resistance to other non- $\beta$ -lactam agents. This can result in delays in the use of effective empirical therapy. The lack of available oral options for treatment can result in unnecessary hospitalisation and, in the setting of bacteraemia, increased mortality risk.

Most ESBL-producing isolates will be detected using the CLSI/EUCAST ceftriaxone 'susceptible' breakpoint of 1 mg/L. The CLSI 'susceptible' breakpoint of 4 mg/L for ceftazidime is less reliable. Isolates with ceftriaxone and/or ceftazidime MICs above 1 mg/L were referred and underwent sequencing.


Neither ceftriaxone nor ceftazidime testing will identify ESBL production in *Enterobacter* species because of their intrinsic chromosomal AmpC  $\beta$ -lactamase. Cefepime MICs of greater than 0.25 mg/L suggest that an *Enterobacter* isolate of this genus harbours an ESBL.<sup>10</sup> However, due to the cefepime concentration range available on the susceptibility cards, isolates with a cefepime MIC of greater than 1 mg/L were referred and underwent sequencing.

Sequences of all referred isolates were screened for the presence of  $\beta$ -lactamase genes using methods outlined in Appendix B.

*E. coli* and *K. pneumoniae* complex isolates resistant to ceftriaxone and/or ceftazidime (MIC > 1 mg/L), and their variation across states and territories, are shown in Figure 5.

The percentage of *E. coli* with an ESBL phenotype was highest in the Northern Territory (28.8%, 49/170) and lowest in Tasmania (5.6%, 13/231). The percentage of *K. pneumoniae* complex with an ESBL phenotype ranged from 21.2% (11/52) in the Northern Territory, to 4.4% (10/227) in Queensland.

**Figure 5.** Percentage of *Escherichia coli* and *Klebsiella pneumoniae* complex with extendedspectrum  $\beta$ -lactamase phenotype, by state and territory, and nationally, AGAR, 2022



Note: Extended spectrum  $\beta$ -lactamase phenotype defined as ceftriaxone or ceftazidime MIC > 1 mg/L

An ESBL phenotype was significantly more prevalent among HO than CO episodes of *E. coli* (158/921 [17.2%] vs 600/4340 [13.8%], P < 0.01) and *K. pneumoniae* complex bacteraemia (54/426 [12.7%] vs 51/966 [5.3%], P < 0.01).

An ESBL phenotype was more common among *E. coli* (758/5261, 14.4%) than *K. pneumoniae* complex isolates (105/1392, 7.5%) (Figure 5). For 57 *E. cloacae* complex isolates with cefepime MIC >1 mg/L, 24 (42.1%; 4.4% overall) contained a non-intrinsic  $\beta$ -lactamase gene(s): ESBL only (*n* = 14), ESBL + carbapenemase (*n* = 8), or carbapenemase only (*n* = 2) (Table 17).

The vast majority (94.4%, 17/18) of *K. oxytoca* isolates with a ceftriaxone-resistant phenotype are presumably hyperproducers of OXY, the natural chromosomal  $\beta$ -lactamase in this species, with characteristic resistance to piperacillin–tazobactam and borderline resistance to cefepime, but susceptibility to ceftazidime (data not shown).<sup>11, 12</sup> This pattern is not typical of other types of gramnegative  $\beta$ -lactamases.

Plasmid-borne AmpC and/or carbapenemase genes were also detected in isolates that had an ESBL phenotype but no ESBL genes.

| <b>Table 17:</b> $\beta$ -lactamase genes detected in <i>Enterobacterales</i> with extended-spectrum $\beta$ -lactamase phenotype, |
|------------------------------------------------------------------------------------------------------------------------------------|
| AGAR, 2022                                                                                                                         |

| β-lactamase<br>mechanism                            | Escherichia<br>coli | Klebsiella<br>pneumoniae<br>complex | <i>Enterobacte<br/>r cloacae</i><br>complex | Proteus<br>mirabilis | Klebsiella<br>oxytoca | Salmonella<br>spp.† |
|-----------------------------------------------------|---------------------|-------------------------------------|---------------------------------------------|----------------------|-----------------------|---------------------|
| Total                                               | 5,261               | 1,392                               | 475                                         | 323                  | 296                   | 133                 |
| ESBL phenotype*, %<br>(n)                           | 14.4 (758)          | 7.5 (105)                           | 12.0 (57)                                   | 2.5 (8)              | 6.1 (18)              | 4.5 (6)             |
| β-lactamase genes<br>confirmed/number<br>tested (%) | 683/723<br>(94.5)   | 91/103<br>(88.3)                    | 24/57<br>(42.1)                             | 4/6<br>(66.7)        | 1/14<br>(7.1)         | 6/6<br>(100.0)      |
| ESBL                                                | 560                 | 75                                  | 14                                          | 3                    | 0                     | 6                   |
| ESBL, AmpC                                          | 17                  | 1                                   | 0                                           | 0                    | 0                     | 0                   |
| ESBL, AmpC, Carb                                    | 0                   | 1                                   | 0                                           | 0                    | 0                     | 0                   |
| ESBL, Carb                                          | 4                   | 3                                   | 8                                           | 0                    | 0                     | 0                   |
| AmpC                                                | 99                  | 7                                   | 0                                           | 1                    | 1                     | 0                   |
| AmpC, Carb                                          | 1                   | 1                                   | 0                                           | 0                    | 0                     | 0                   |
| Carb                                                | 2                   | 3                                   | 2                                           | 0                    | 0                     | 0                   |
| Not detected                                        | 40                  | 12                                  | 33                                          | 2                    | 13                    | 0                   |
| Not determined§                                     | 35                  | 2                                   | 0                                           | 2                    | 4                     | 0                   |

AmpC = plasmid-borne *ampC*; Carb = carbapenemase; ESBL = extended-spectrum  $\beta$ -lactamase

\* ESBL phenotype = ceftriaxone or ceftazidime MIC > 1 mg/L; for E. cloacae complex, cefepime MIC > 1 mg/L

<sup> $\dagger$ </sup> Non-typhoidal (n = 96), typhoidal (n = 37)

§ Isolate not available for confirmation

The  $\beta$ -lactamase genes confirmed in *Enterobacterales* with an ESBL phenotype are shown in Table 18. *bla*<sub>CTX-M</sub> types continue to be the dominant  $\beta$ -lactamase genes in *E. coli*. Of 683 with confirmed  $\beta$ -lactamase gene(s), 578 (84.6%) had one or more *bla*<sub>CTX-M</sub> genes, either *bla*<sub>CTX-M</sub> group 1 (n = 295), *bla*<sub>CTX-M</sub> group 9 (n = 282), or a CTX-M group 1/9/1 hybrid (n = 1). CTX-M group 1 types were dominant in Victoria, South Australia, and the Australian Capital Territory. CTX-M group 9 types were more prevalent in Queensland, Western Australia, and Tasmania.

Among *K. pneumoniae* complex isolates with confirmed  $\beta$ -lactamase genes, 73 of 91 (80.2%) contained a *bla*<sub>CTX-M</sub> gene: *bla*<sub>CTX-M</sub> group 1 (n = 65), *bla*<sub>CTX-M</sub> group 9 (n = 6) or *bla*<sub>CTX-M</sub> group 1 + *bla*<sub>CTX-M</sub> group (n = 1) (Table 18).

**Table 18:**  $\beta$ -lactamase genes among *Enterobacterales* with extended-spectrum  $\beta$ -lactamase phenotype, by state and territory, AGAR, 2022

| Species                                   | NSW           | Vic           | Qld          | SA           | WA           | Tas         | NT           | ACT          | Australia     |
|-------------------------------------------|---------------|---------------|--------------|--------------|--------------|-------------|--------------|--------------|---------------|
| Escherichia coli                          | 1,771         | 1,054         | 711          | 439          | 695          | 231         | 170          | 190          | 5,261         |
| ESBL phenotype*, % ( <i>n</i> )           | 16.8<br>(297) | 12.2<br>(129) | 12.4<br>(88) | 13.7<br>(60) | 12.8<br>(89) | 5.6<br>(13) | 28.8<br>(49) | 17.4<br>(33) | 14.4<br>(758) |
| Confirmed β-lactamase                     | 251/          | 120/          | 82/          | 53/          | 85/          | 12/         | 48/          | 32/          | 683/          |
| genes/number tested<br>ESBL types         | 270<br>198    | 128<br>113    | 86<br>61     | 58<br>48     | 87<br>75     | 13<br>12    | 48<br>46     | 33<br>28     | 723<br>581    |
| CTX-M-types                               | 198           | 112           | 60           | 40           | 75           | 12          | 46           | 28           | 578           |
|                                           | 96            | 61            | 24           | 29           | 35           | 4           | 25           | 20           | 295           |
| group 1                                   |               |               |              |              |              |             |              |              |               |
| group 9                                   | 101           | 50            | 36           | 19           | 40           | 8           | 21           | 7            | 282           |
| group 1/9/1 hybrid                        | 0             | 1             | 0            | 0            | 0            | 0           | 0            | 0            | 1             |
| SHV (ESBL types)                          | 1             | 1             | 0            | 0            | 0            | 0           | 0            | 0            | 2             |
| TEM (ESBL types)                          | 0             | 0             | 1            | 0            | 0            | 0           | 0            | 0            | 1             |
| Plasmid-borne AmpC                        | 62            | 8             | 23           | 6            | 11           | 1           | 3            | 3            | 117           |
| CMY-2-like                                | 31            | 5             | 10           | 0            | 3            | 0           | 1            | 2            | 52            |
| DHA-1                                     | 31            | 3             | 13           | 6            | 7            | 1           | 2            | 1            | 64            |
| CMY-2-like + DHA                          | 0             | 0             | 0            | 0            | 1            | 0           | 0            | 0            | 1             |
| Carbapenemases                            | 4             | 1             | 0            | 0            | 1            | 0           | 0            | 1            | 7             |
| NDM-5                                     | 2             | 1             | 0            | 0            | 1            | 0           | 0            | 0            | 4             |
| NDM-5 + OXA-181                           | 1             | 0             | 0            | 0            | 0            | 0           | 0            | 0            | 1             |
| IMP-4                                     | 0             | 0             | 0            | 0            | 0            | 0           | 0            | 1            | 1             |
| OXA-181                                   | 1             | 0             | 0            | 0            | 0            | 0           | 0            | 0            | 1             |
| Klebsiella pneumoniae complex             | 444           | 282           | 227          | 83           | 212          | 50          | 52           | 42           | 1,392         |
| ESBL phenotype*, % (n)                    | 8.8<br>(39)   | 7.1<br>(20)   | 4.4<br>(10)  | 6.0<br>(5)   | 5.7<br>(12)  | 8.0<br>(4)  | 21.2<br>(11) | 9.5<br>(4)   | 7.5<br>(105)  |
| Confirmed β-lactamase genes/number tested | 33/37         | 18/20         | 7/10         | 4/5          | 10/12        | 4/4         | 11/11        | 4/4          | 91/103        |
| ESBL types                                | 26            | 18            | 6            | 3            | 9            | 4           | 11           | 3            | 80            |
| CTX-M-types                               | 25            | 15            | 6            | 2            | 9            | 4           | 10           | 2            | 73            |
| group 1                                   | 24            | 11            | 5            | 2            | 9            | 4           | 10           | 0            | 65            |
| group 9                                   | 1             | 4             | 1            | 0            | 0            | 0           | 0            | 0            | 6             |
| group 1 + group 9                         | 0             | 0             | 0            | 0            | 0            | 0           | 0            | 2            | 2             |
| SHV (ESBL types)                          | 2             | 3             | 1            | 1            | 0            | 1           | 1            | 3            | 12            |
| PER                                       | 0             | 1             | 0            | 0            | 0            | 0           | 0            | 0            | 1             |
| Plasmid-borne AmpC                        | 6             | 1             | 1            | 1            | 1            | 0           | 0            | 0            | 10            |
| DHA-1                                     | 5             | 0             | 1            | 1            | 1            | 0           | 0            | 0            | 8             |
| CMY-2-like                                | 1             | 1             | 0            | 0            | 0            | 0           | 0            | 0            | 2             |
| Carbapenemases                            | 2             | 3             | 1            | 0            | 0            | 0           | 1            | 1            | 8             |
| IMP-4                                     | 2             | 1             | 0            | 0            | 0            | 0           | 1            | 1            | 5             |
| NDM-1                                     | 0             | 1             | 1            | 0            | 0            | 0           | 0            | 0            | 2             |
| NDM-1 + OXA-181                           | 0             | 1             | 0            | 0            | 0            | 0           | 0            | 0            | 1             |

| Species                                       | NSW          | Vic          | Qld        | SA          | WA         | Tas         | NT          | ACT        | Australia    |
|-----------------------------------------------|--------------|--------------|------------|-------------|------------|-------------|-------------|------------|--------------|
| Enterobacter cloacae complex                  | 170          | 98           | 88         | 22          | 51         | 19          | 9           | 18         | 475          |
| ESBL phenotype*, % (n)                        | 15.3<br>(26) | 13.3<br>(13) | 6.8<br>(6) | 31.8<br>(7) | 2.0<br>(1) | 10.5<br>(2) | 11.1<br>(1) | 5.6<br>(1) | 12.0<br>(57) |
| Confirmed β-lactamase genes/number tested (%) | 13/26        | 5/13         | 2/6        | 1/7         | 1/1        | 1/2         | 1/1         | 0/1        | 24/57        |
| ESBL types                                    | 11           | 5            | 2          | 1           | 1          | 1           | 1           | 0          | 22           |
| CTX-M-types                                   | 5            | 3            | 1          | 1           | 1          | 0           | 1           | 0          | 12           |
| group 1                                       | 5            | 3            | 1          | 1           | 0          | 0           | 1           | 0          | 11           |
| group 9                                       | 0            | 0            | 0          | 0           | 1          | 0           | 0           | 0          | 1            |
| SHV (ESBL types)                              | 4            | 2            | 2          | 0           | 0          | 1           | 0           | 0          | 9            |
| VEB                                           | 2            | 0            | 0          | 0           | 0          | 0           | 0           | 0          | 2            |
| Carbapenemases                                | 7            | 1            | 2          | 0           | 0          | 0           | 0           | 0          | 10           |
| IMP-4                                         | 7            | 1            | 1          | 0           | 0          | 0           | 0           | 0          | 9            |
| NDM-1                                         | 0            | 0            | 1          | 0           | 0          | 0           | 0           | 0          | 1            |

ESBL = extended-spectrum  $\beta$ -lactamase; n/a = Insufficient numbers (<10) to calculate percentage

\* ESBL phenotype = ceftriaxone and/or ceftazidime MIC > 1 mg/L; for *E. cloacae* complex, cefepime MIC > 1 mg/L

Note: Isolates may possess more than one type of  $\beta$ -lactamase gene.

*bla*<sub>CTX-M</sub> genes were detected in 79.9% (578/723) of *E. coli* with an ESBL phenotype (Table 19). In the *bla*<sub>CTX-M-1</sub> group, *bla*<sub>CTX-M-15</sub> accounted for 89.2% (263/295). In the *bla*<sub>CTX-M-9</sub> group, *bla*<sub>CTX-M-27</sub> and *bla*<sub>CTX-M-14</sub> were the major genotypes, accounting for 78.4% (221/282) and 18.1% (51/282), respectively.

|                             |        | Phen | otype        |     | Sequence type |    |    |    |    |                                    |
|-----------------------------|--------|------|--------------|-----|---------------|----|----|----|----|------------------------------------|
| CTX-M variant               | Number | ESBL | Non-<br>ESBL | 131 | 1193          | 69 | _* | 73 | 38 | Other<br>types<br>( <i>n</i> = 93) |
| Not detected                | 221    | 145  | 76           | 13  | 14            | 35 | 12 | 10 | 8  | 129                                |
| CTX-M-1 group               | 296    | 295  | 2            | 120 | 23            | 12 | 18 | 33 | 7  | 84                                 |
| CTX-M-15                    | 261    | 260  | 1            | 114 | 16            | 9  | 13 | 33 | 7  | 69                                 |
| CTX-M-55                    | 22     | 21   | 1            | 5   | 6             | 2  | 2  | 0  | 0  | 7                                  |
| CTX-M-3                     | 7      | 7    | 0            | 0   | 0             | 0  | 3  | 0  | 0  | 4                                  |
| CTX-M-1                     | 2      | 2    | 0            | 0   | 1             | 0  | 0  | 0  | 0  | 1                                  |
| CTX-M-15-like <sup>†</sup>  | 2      | 2    | 0            | 0   | 0             | 1  | 0  | 0  | 0  | 1                                  |
| CTX-M-15, CTX-M-189         | 1      | 1    | 0            | 1   | 0             | 0  | 0  | 0  | 0  | 0                                  |
| CTX-M-62                    | 1      | 1    | 0            | 0   | 0             | 0  | 0  | 0  | 0  | 1                                  |
| CTX-M-182                   | 1      | 1    | 0            | 0   | 0             | 0  | 0  | 0  | 0  | 1                                  |
| CTX-M-9 group               | 283    | 282  | 1            | 171 | 27            | 5  | 22 | 5  | 27 | 26                                 |
| CTX-M-27                    | 221    | 220  | 1            | 146 | 24            | 3  | 21 | 1  | 14 | 12                                 |
| CTX-M-14a                   | 47     | 47   | 0            | 19  | 2             | 2  | 1  | 4  | 6  | 13                                 |
| CTX-M-24                    | 7      | 7    | 0            | 5   | 0             | 0  | 0  | 0  | 2  | 0                                  |
| CTX-M-14b                   | 4      | 4    | 0            | 0   | 0             | 0  | 0  | 0  | 4  | 0                                  |
| CTX-M-27-like§              | 1      | 1    | 0            | 0   | 0             | 0  | 0  | 0  | 1  | 0                                  |
| CTX-M-65                    | 1      | 1    | 0            | 0   | 0             | 0  | 0  | 0  | 0  | 1                                  |
| CTX-M-134                   | 1      | 1    | 0            | 1   | 0             | 0  | 0  | 0  | 0  | 0                                  |
| CTX-M-240                   | 1      | 1    | 0            | 0   | 1             | 0  | 0  | 0  | 0  | 0                                  |
| CTX-M group 1/9/1<br>hybrid | 1      | 1    | 0            | 0   | 1             | 0  | 0  | 0  | 0  | 0                                  |
| CTX-M-64                    | 1      | 1    | 0            | 0   | 1             | 0  | 0  | 0  | 0  | 0                                  |
|                             | 802    | 723  | 79           | 304 | 65            | 52 | 52 | 48 | 42 | 239                                |
|                             |        |      |              |     |               |    |    |    |    |                                    |

#### Table 19: Escherichia coli, CTX-M variants, ESBL phenotype, sequence type, AGAR, 2022

ESBL = extended-spectrum  $\beta$ -lactamase

\* Not available

+ CTX-M-15-like (n = 2): one has 2 SNPs at 214T to A (Cys to Ser) and 239C to T (Ala to Val); and another with 2 SNPs at 208G to C (Ala to Pro) and 724G to A (Gly to Ser)

§ CTX-M-27-like: 1 SNP. 352G to A (Gly to Ser)

In the *bla*<sub>CTX-M</sub>-positive isolates, *bla*<sub>SHV</sub>- or *bla*<sub>TEM</sub>-type ESBL genes were not detected. Among 145 *bla*<sub>CTX-M</sub>-negative isolates with an ESBL phenotype, 99 harboured one or more pAmpC type genes only (*bla*<sub>DHA-1</sub> [56], *bla*<sub>DHA-27</sub> [1], *bla*<sub>CMY-2</sub> [38], *bla*<sub>CMY-4</sub> [1], *bla*<sub>CMY-42</sub> [1], *bla*<sub>CMY-141</sub> [1], *bla*<sub>CMY-42</sub> + *bla*<sub>DHA-1</sub> [1]). Three harboured only a *bla*<sub>SHV</sub> or *bla*<sub>TEM</sub> ESBL gene (*bla*<sub>SHV-12</sub> [2], *bla*<sub>TEM-207</sub> [1]); two harboured only carbapenemase gene(s) alone (*bla*<sub>IMP-4</sub> [1]; *bla*<sub>OXA-181</sub> [1]); and one harboured both pAmpC and carbapenemase gene (*bla*<sub>CMY-146</sub> + *bla*<sub>OXA-181</sub>). β-lactam resistance mechanisms were not detected in the remaining 40 isolates.

Half (49.9%, 290/581) of the ESBL-producing *E. coli* with confirmed ESBL genes belong to sequence type 131 (ST131) (Table 20). The fluoroquinolone-resistant subclade, H30R, was the most prevalent subclade of ST131 (52.4%, 152/290). Within ST131, all isolates that identified as H30Rx (subclade C2) (n = 87) carried  $bla_{CTX-M-15}$ , a finding reported globally.<sup>13-15</sup> Two-thirds (65.9%, 145/220) of isolates with  $bla_{CTX-M-27}$  were ST131; 86 belonged to H41 subclade A; 45 belonged to H30R subclade C1-M27, 11 belonged to H99 and 3 to other *fimH* alleles.

ST1193 has recently been identified as an emerging multidrug-resistant clone.<sup>16, 17</sup> In the 2022 survey, ST1193 was the second most prevalent ST among *E. coli* with an ESBL phenotype (57/723, 7.9%). All 57 ST1193 isolates were ciprofloxacin resistant. All of these isolates harboured either ESBL (*bla*<sub>CTX-M</sub> [49]), pAmpC (*bla*<sub>DHA-1</sub> [6] or (*bla*<sub>CMY-42</sub> [1]) alone, or both ESBL + pAmpC (*bla*<sub>CTX-M-27</sub> + *bla*<sub>CMY-2</sub> [1]) genes.

#### Table 20: ESBL-producing Escherichia coli, ST131, fimH allele, H30Rx, AGAR, 2022

|                     |        |     |           |       | ST131 |     |     |                     |               |  |  |
|---------------------|--------|-----|-----------|-------|-------|-----|-----|---------------------|---------------|--|--|
|                     | H30    |     |           |       |       |     |     |                     |               |  |  |
| ESBL type           | Number | All | -<br>H41* | H30Rx | H30R  | H99 | H89 | Others <sup>†</sup> | Non-<br>ST131 |  |  |
| CTX-M-15            | 260    | 114 | 20        | 87    | 3     | 1   | 0   | 3                   | 146           |  |  |
| CTX-M-27            | 220    | 145 | 86        | 0     | 45    | 11  | 0   | 3                   | 75            |  |  |
| CTX-M-14a           | 47     | 19  | 4         | 0     | 14    | 0   | 0   | 1                   | 28            |  |  |
| CTX-M-55            | 21     | 5   | 2         | 0     | 2     | 0   | 0   | 1                   | 16            |  |  |
| CTX-M-3             | 7      | 0   | 0         | 0     | 0     | 0   | 0   | 0                   | 7             |  |  |
| CTX-M-24            | 7      | 5   | 0         | 0     | 0     | 0   | 5   | 0                   | 2             |  |  |
| CTX-M-14b           | 4      | 0   | 0         | 0     | 0     | 0   | 0   | 0                   | 4             |  |  |
| CTX-M-1             | 2      | 0   | 0         | 0     | 0     | 0   | 0   | 0                   | 2             |  |  |
| CTX-M-15-like       | 2      | 0   | 0         | 0     | 0     | 0   | 0   | 0                   | 2             |  |  |
| CTX-M-15, CTX-M-189 | 1      | 1   | 1         | 0     | 0     | 0   | 0   | 0                   | 0             |  |  |
| CTX-M-27-like       | 1      | 0   | 0         | 0     | 0     | 0   | 0   | 0                   | 1             |  |  |
| CTX-M-62            | 1      | 0   | 0         | 0     | 0     | 0   | 0   | 0                   | 1             |  |  |
| CTX-M-64            | 1      | 0   | 0         | 0     | 0     | 0   | 0   | 0                   | 1             |  |  |
| CTX-M-65            | 1      | 0   | 0         | 0     | 0     | 0   | 0   | 0                   | 1             |  |  |
| CTX-M-134           | 1      | 1   | 0         | 0     | 1     | 0   | 0   | 0                   | 0             |  |  |
| CTX-M-182           | 1      | 0   | 0         | 0     | 0     | 0   | 0   | 0                   | 1             |  |  |
| CTX-M-240           | 1      | 0   | 0         | 0     | 0     | 0   | 0   | 0                   | 1             |  |  |
| SHV-12              | 2      | 0   | 0         | 0     | 0     | 0   | 0   | 0                   | 2             |  |  |
| TEM-207             | 1      | 0   | 0         | 0     | 0     | 0   | 0   | 0                   | 1             |  |  |
|                     | 581    | 290 | 113       | 87    | 65    | 12  | 5   | 8                   | 291           |  |  |

ESBL = extended-spectrum  $\beta$ -lactamase

\* Includes H41-like (n = 1)
 † H22 (n = 4), H54 (n = 2), unknown (n = 2)

# 3.9.2. Plasmid-borne AmpC β-lactamases

Plasmid-borne *ampC*  $\beta$ -lactamase genes have emerged internationally as a potential gramnegative resistance problem. They are the result of mobilisation of natural chromosomally located genes from common and uncommon species of *Enterobacterales* onto transmissible plasmids, and transmission into more common pathogens. There are currently six separate groups of plasmid-encoded AmpC  $\beta$ -lactamases. Like ESBLs, these enzymes confer resistance to the important third-generation cephalosporins, such as ceftriaxone and ceftazidime. Routine phenotypic detection methods have not yet been developed. Nevertheless, it is possible to exploit a special feature of these enzymes: their ability to inactivate the cephamycins, represented by cefoxitin. *Enterobacter* species naturally possess a chromosomally encoded AmpC enzyme.

All referred isolates were examined for the presence of plasmid-borne *ampC* (*bla*<sub>CMY-2</sub>-like, *bla*<sub>DHA</sub>, *bla*<sub>FOX</sub>, *bla*<sub>MOX</sub>, *bla*<sub>ACT/MIR</sub>, *bla*<sub>ACC</sub>) genes using WGS methods outlined in Appendix B.

The proportions of *E. coli* and *K. pneumoniae* complex isolates with a cefoxitin MIC > 8 mg/L (nonwild type) remain low (5.3% and 5.0% respectively) (Table 21). A little over one-third (108/265, 40.8%) of *E. coli* and 15.6% (10/64) of *K. pneumoniae* complex isolates with cefoxitin MIC > 8 mg/L that were available for confirmation contained one or more plasmid-borne *ampC* genes (Table 21). In most cases the plasmid-borne *ampC* gene type was *bla*<sub>DHA</sub>, found in 57.4% (62/108) of *E. coli* and 80.0% (8/10) of *K. pneumoniae* complex isolates

| Species                                 | NSW          | Vic         | Qld         | SA          | WA          | Tas        | NT         | ACT         | Total        |
|-----------------------------------------|--------------|-------------|-------------|-------------|-------------|------------|------------|-------------|--------------|
| Escherichia coli                        | 1,771        | 1,053       | 711         | 439         | 695         | 231        | 170        | 190         | 5,260        |
| Cefoxitin MIC > 8 mg/L<br>(%)           | 123<br>(6.9) | 47<br>(4.5) | 39<br>(5.5) | 17<br>(3.9) | 31<br>(4.5) | 6<br>(2.6) | 5<br>(2.9) | 10<br>(5.3) | 278<br>(5.3) |
| Confirmed/number tested                 | 54/115       | 6/46        | 23/37       | 6/15        | 11/31       | 1/6        | 3/5        | 4/10        | 108/265      |
| bla <sub>DHA-1</sub> *                  | 27           | 2           | 14          | 6           | 7           | 1          | 1          | 2           | 60           |
| bla <sub>DHA-6</sub>                    | 0            | 0           | 0           | 0           | 0           | 0          | 1          | 0           | 1            |
| bla <sub>DHA-27</sub>                   | 1            | 0           | 0           | 0           | 0           | 0          | 0          | 0           | 1            |
| bla <sub>CMY-2</sub>                    | 21           | 4           | 9           | 0           | 2           | 0          | 1          | 2           | 39           |
| bla <sub>CMY-4</sub>                    | 2            | 0           | 0           | 0           | 0           | 0          | 0          | 0           | 2            |
| bla <sub>CMY-42</sub>                   | 1            | 0           | 0           | 0           | 0           | 0          | 0          | 0           | 1            |
| bla <sub>CMY-141</sub>                  | 1            | 0           | 0           | 0           | 0           | 0          | 0          | 0           | 1            |
| bla <sub>CMY-146</sub>                  | 1            | 0           | 0           | 0           | 0           | 0          | 0          | 0           | 1            |
| Other bla <sub>CMY-2</sub> -like        | 0            | 0           | 0           | 0           | 1           | 0          | 0          | 0           | 1            |
| <i>bla</i> CMY-42 + DHA-1               | 0            | 0           | 0           | 0           | 1           | 0          | 0          | 0           | 1            |
| <i>Klebsiella pneumoniae</i><br>complex | 444          | 282         | 227         | 83          | 212         | 50         | 52         | 42          | 1,392        |
| Cefoxitin MIC > 8 mg/L<br>(%)           | 24<br>(5.4)  | 17<br>(6.0) | 8<br>(3.5)  | 4<br>(4.8)  | 12<br>(5.7) | 0<br>(0.0) | 3<br>(5.8) | 1<br>(2.4)  | 69<br>(5.0)  |
| Confirmed/number tested                 | 6/23         | 1/16        | 1/6         | 1/3         | 1/12        | 0/0        | 0/3        | 0/1         | 10/64        |
| bla <sub>DHA-1</sub>                    | 5            | 0           | 1           | 1           | 1           | 0          | 0          | 0           | 8            |
| bla <sub>CMY-6</sub>                    | 0            | 1           | 0           | 0           | 0           | 0          | 0          | 0           | 1            |
| bla <sub>CMY-13</sub>                   | 1            | 0           | 0           | 0           | 0           | 0          | 0          | 0           | 1            |

**Table 21:** Number of isolates with presumptive plasmid-borne AmpC  $\beta$ -lactamase production, by state and territory, AGAR, 2022

MIC = minimum inhibitory concentration

\* Includes DHA-1-like (n = 1): 1 SNP, 721G to T (Gly to Cys)

Of cefoxitin non-wild type (MIC > 8 mg/L) isolates that did not have a plasmid-encoded *ampC* gene, one or more carbapenemase genes were detected in six of 157 (3.8%) *E. coli* (*bla*<sub>IMP-5</sub> [4], *bla*<sub>NDM-5</sub> + *bla*<sub>OXA-181</sub> [1], *bla*<sub>IMP-4</sub> [1]), and six of 54 (11.1%) *K. pneumoniae* complex (*bla*<sub>IMP-4</sub> [5],

*bla*<sub>NDM-7</sub> [1]). Eleven *E. coli* with a wild type cefoxitin MIC ( $\leq 8 \text{ mg/L}$ ) contained pAmpC types (*bla*<sub>CMY-2</sub> [5], *bla*<sub>CMY-4</sub> [2], *bla*<sub>DHA-1</sub> [4]), and one *K. pneumoniae* complex with cefoxitin MIC  $\leq 8 \text{ mg/L}$  contained *bla*<sub>CMY-70</sub> (data not shown).

### 3.9.3. Carbapenem resistance

Only 0.4% (37/8,742) of *Enterobacterales* had a meropenem MIC > 2 mg/L; an additional 28 had meropenem MIC between 1 and 2 mg/L. Meropenem resistance (MIC > 8 mg/L) was at 4.3% (36/836) for *P. aeruginosa*, and 1.9% (2/106) for *Acinetobacter* species (Table 22).

Among meropenem-resistant (MIC >8 mg/L) isolates that were available, carbapenemase genes were found in 91.7% (22/24) of *Enterobacterales*, 2.9% (1/34) *P. aeruginosa*, and all (2/2) *Acinetobacter* species (Table 22). Carbapenemase genes were found in two *Enterobacterales* with meropenem MIC of 2 mg/L, *K. pneumoniae* (*bla*<sub>NDM-1</sub> + *bla*<sub>OXA-181</sub>), and *E. coli* (*bla*<sub>OXA-244</sub>), and one *E. coli* (*bla*<sub>OXA-181</sub>), with MIC of 0.5 mg/L.

| Acinetobacter<br>(n = 106) |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Enterobacterales<br>(n = 8,742)                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                 | Pseudomonas<br>(n = 836)                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |
|----------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Merope                     | Meropenem MIC (mg/L)                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Merc                                                                                                                                                                                                                                                                          | penem                                                                                                                                                                                                                                                                                                                                                                                                                 | MIC (mg                                                                                                                                                                                                                         | j/L)                                                                                                                                                                                                                                                              | Meropenem MIC (mg/L)                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |
| ≤2                         | 4-8                                                                                                             | >8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ≤0.5                                                                                                                                                                                                                                                                          | 1-2                                                                                                                                                                                                                                                                                                                                                                                                                   | 4-8                                                                                                                                                                                                                             | >8                                                                                                                                                                                                                                                                | ≤2                                                                                                                                                                                                                                                                  | 4-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | >8                                                                                                                                                                                                                                                                                                                            |
| 104                        | 0                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8,677                                                                                                                                                                                                                                                                         | 28                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                                                                                                                                                                                              | 25                                                                                                                                                                                                                                                                | 749                                                                                                                                                                                                                                                                 | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36                                                                                                                                                                                                                                                                                                                            |
| 0/0                        | _*                                                                                                              | 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/1,142                                                                                                                                                                                                                                                                       | 2/27                                                                                                                                                                                                                                                                                                                                                                                                                  | 4/11                                                                                                                                                                                                                            | 22/24                                                                                                                                                                                                                                                             | 0/3                                                                                                                                                                                                                                                                 | 0/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/34                                                                                                                                                                                                                                                                                                                          |
|                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |
| 0                          | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                               | 22                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                             |
| 0                          | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                               | 16                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                             |
| 0                          | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                             |
| 0                          | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                             |
| 0                          | 0                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                             |
| 0                          | 0                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                             |
| 0                          | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                             |
| 0                          | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                             |
| 0                          | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                             |
| 0                          | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                             |
| 0                          | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                             |
|                            | Merope<br>≤2<br>104<br>0/0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $(n = 106)$ Meropenem MIC $\leq 2$ 4-8         104       0         0/0       -*         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0 | ( $n = 106$ )Meropener MIC (mg/L) $\leq 2$ $4-8$ >8 $104$ $0$ $2$ $0/0$ $-^*$ $2/2$ $0/0$ $-^*$ $2/2$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ | ( $n = 106$ )         MIC (mg/L)       Merodetic $\leq 2$ $4 \cdot 8$ >8 $\leq 0.5$ $104$ $0$ $2$ $8,677$ $0/0$ $-^*$ $2/2$ $1/1,142$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $2$ $1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ | ( $n = 106$ )( $n = 8$ )Meropener MIC (mg/L)Meropener $\leq 2$ $4 \cdot 8$ >8 $\leq 0.5$ $1 \cdot 2$ $104$ 02 $8,677$ $28$ $0/0$ -* $2/2$ $1/1,142$ $2/27$ $0$ 0000000000000000000000000021100200000100001000001000010000100001 | $(n = 106)$ $(n = 8,742)$ Meropener MIC (mg/L)Meropener MIC (mg/L) $\leq 2$ 4-8>8 $\leq 0.5$ 1-24-8 $104$ 028,6772812 $0/0$ -*2/21/1,1422/274/11 $0/0$ 0003 $0$ 0002 $0$ 0000 $0$ 0001 $0$ 0211 $0$ 0211 $0$ 0200 $0$ 010 $0$ 010 $0$ 001 $0$ 001 $0$ 001 $0$ 001 | $(n = 106)$ $(n = 8,742)$ Meropener MIC (mg/L)Meropener MIC (mg/L)Meropener MIC (mg/L) $\leq 2$ 4-8>8 $\leq 0.5$ 1-24-8>8104028,6772812250/0-*2/21/1,1422/274/1122/240000032200000322000003160000033000000300000030000003001100002110001000000100000110000110000110 | (n = 106) $(n = 8,742)$ Meroperem MIC (mg/L)Meroperem MIC (mg/L)0000000000 | $(n = 106)$ $(n = 8,742)$ $(n = 836)$ MeropenerMIC (mg/L)MeropenerMeropenerMeropenerMeropener $\leq 2$ 4-8>8 $\leq 0.5$ 1-24-8>8 $\leq 2$ 4-8 $104$ 028,67728122574951 $0/0$ -*2/21/1,1422/274/1122/240/30/11 $0/0$ 000322000000030000000300000001300002110000002110000002110000002110000000100000000100000000110000000110000 |

MIC = minimum inhibitory concentration

\* not applicable

† Carbapenemase molecular class: class B (metallo-β-lactamases - IMP, NDM); class D (oxacillinases - OXA-23, OXA-181, OXA-244)

Note: No Class A carbapenemases (KPC) were detected in 2022

Thirty-two (0.3%) isolates from 31 patients were found to harbour a carbapenemase gene (Table 23). Overall prevalence of carbapenemase genes among *Enterobacterales* was 0.3% (29/8773), although for *E. cloacae* complex isolates it was 2.1% (10/477). *bla*<sub>IMP-4</sub> accounted for 62.1% (18/29) of all CPE in 2022. Half of the *bla*<sub>IMP-4</sub> genes were found in *E. cloacae* complex isolates (9/18, 50.0%). Other types detected in *Enterobacterales* were *bla*<sub>NDM</sub> (*n* = 7), *bla*<sub>NDM</sub> + *bla*<sub>OXA-181</sub> (*n* = 2), *bla*<sub>OXA-181</sub> (*n* = 1), and *bla*<sub>OXA-244</sub> (*n* = 1) genes.

In the 2022 survey among *Acinetobacter* species isolates only 1.6% (2/126), both *Acinetobacter baumannii* complex, harboured a carbapenemase gene; *bla*<sub>OXA-23</sub>. Only one of 840 (0.1%) *P. aeruginosa* isolates carried a carbapenemase gene (*bla*<sub>NDM-1</sub>).

|                                           | Carbapenemase type, number |       |       |       |        |         |         |                   |   |                |
|-------------------------------------------|----------------------------|-------|-------|-------|--------|---------|---------|-------------------|---|----------------|
| Species                                   | Total                      | IMP-4 | NDM-1 | NDM-5 | OXA-23 | OXA-181 | OXA-244 | NDM-1,<br>OXA-181 |   | % ( <i>n</i> ) |
| Enterobacterales                          | 8,773                      | 18    | 3     | 4     | 0      | 1       | 1       | 1                 | 1 | 0.3 (29)       |
| Escherichia coli                          | 5,273                      | 1     | 0     | 4     | 0      | 1       | 1       | 0                 | 1 | 0.2 (8)        |
| <i>Klebsiella pneumoniae</i> complex*     | 1,395                      | 5     | 2     | 0     | 0      | 0       | 0       | 1                 | 0 | 0.6 (8)        |
| Enterobacter cloacae complex <sup>†</sup> | 477                        | 9     | 1     | 0     | 0      | 0       | 0       | 0                 | 0 | 2.1 (10)       |
| Serratia marcescens                       | 257                        | 3     | 0     | 0     | 0      | 0       | 0       | 0                 | 0 | 1.2 (3)        |
| Pseudomonas<br>aeruginosa                 | 840                        | 0     | 1     | 0     | 0      | 0       | 0       | 0                 | 0 | 0.1 (1)        |
| Acinetobacter                             | 126                        | 0     | 0     | 0     | 2      | 0       | 0       | 0                 | 0 | 1.6 (2)        |
| Acinetobacter<br>baumannii complex        | 70                         | 0     | 0     | 0     | 2      | 0       | 0       | 0                 | 0 | 2.8 (2)        |
| All species                               | 9,739                      | 18    | 4     | 4     | 2      | 1       | 1       | 1                 | 1 | 0.3 (32)       |

\* K. pneumoniae (n = 7: bla<sub>IMP-4</sub> [5], bla<sub>NDM-1</sub> [1], bla<sub>NDM-1</sub> + bla<sub>OXA-181</sub> [1]); K. variicola (n = 1: bla<sub>NDM-1</sub>)

<sup>+</sup> E. hormaechei (n = 9: bla<sub>IMP-4</sub> [8], bla<sub>NDM-1</sub> [1]); E. cloacae (n = 1, bla<sub>IMP-4</sub>)

Isolates carrying carbapenemase genes were detected in 18 hospitals from six states and territories. CPE infections are particularly notable in New South Wales (15/2195, 0.5%) and Victoria (7/1789, 0.4%), compared to other states and territories (Table 24). A little over one-half (10/18, 55.6%) of the hospitals had one carbapenemase-producing isolate only.

| Organism group and carbapenemase                            | NSW      | Vic     | Qld     | SA      | WA      | Tas     | NT      | АСТ     | Total    |
|-------------------------------------------------------------|----------|---------|---------|---------|---------|---------|---------|---------|----------|
| Total species, n                                            | 3,210    | 1,960   | 1,398   | 785     | 1,325   | 426     | 296     | 339     | 9,739    |
| Acinetobacter                                               | 23       | 25      | 26      | 12      | 15      | 9       | 12      | 4       | 126      |
| Carbapenemase, % (n)                                        | 0.0 (0)  | 0.0 (0) | 3.8 (1) | 0.0 (0) | 0.0 (0) | 0.0 (0) | 8.3 (1) | 0.0 (0) | 1.6 (2)  |
| bla <sub>OXA-23</sub>                                       | 0        | 0       | 1       | 0       | 0       | 0       | 1       | 0       | 2        |
| Enterobacterales                                            | 2,915    | 1,789   | 1,218   | 697     | 1,197   | 381     | 271     | 305     | 8,773    |
| Carbapenemase, % (n)                                        | 0.5 (15) | 0.4 (7) | 0.3 (3) | 0.0 (0) | 0.1 (1) | 0.0 (0) | 0.7 (1) | 0.6 (2) | 0.3 (29) |
| bla <sub>IMP-4</sub>                                        | 10       | 4       | 1       | 0       | 0       | 0       | 1       | 2       | 18       |
| bla <sub>NDM-5</sub>                                        | 2        | 1       | 0       | 0       | 1       | 0       | 0       | 0       | 4        |
| <i>bla</i> NDM-1                                            | 0        | 1       | 2       | 0       | 0       | 0       | 0       | 0       | 3        |
| <i>bla</i> NDM-1 + <i>bla</i> OXA-181                       | 0        | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 1        |
| <i>bla</i> <sub>NDM-5</sub> + <i>bla</i> <sub>OXA-181</sub> | 1        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1        |
| <i>bla</i> OXA-181                                          | 1        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1        |
| <i>bla</i> 0XA-244                                          | 1        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1        |
| Pseudomonas<br>aeruginosa                                   | 272      | 146     | 154     | 76      | 113     | 36      | 13      | 30      | 840      |
| Carbapenemase, % (n)                                        | 0.4 (1)  | 0.0 (0) | 0.0 (0) | 0.0 (0) | 0.0 (0) | 0.0 (0) | 0.0 (0) | 0.0 (0) | 0.1 (1)  |
| <i>bla</i> NDM-1                                            | 1        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1        |
| Overall prevalence, % (n)                                   | 0.5 (16) | 0.4 (7) | 0.3 (4) | 0.0 (0) | 0.1 (1) | 0.0 (0) | 0.7 (2) | 0.6 (2) | 0.3 (32) |

 Table 24:
 Carbapenemase genes, organism group, state and territory, AGAR, 2022

## 3.9.4. Fluoroquinolone resistance

Multiple resistance mechanisms against quinolones have been described. Resistance is most commonly due to mutations in the quinolone resistance-determining region (QRDR) of DNA gyrase (*gyrA*, *gyrB*) and/or topoisomerase IV (*parC*, *parE*). Transmissible plasmid-mediated quinolone resistance (PMQR) has emerged in *Enterobacterales*. PMQR determinants include *qnr* genes (*qnrA*, *qnrB*, *qnrC*, *qnrD*, *qnrE*, *qnrS*, *qnrVC*); *aac*(6')-*Ib-cr*, coding for a variant aminoglycoside acetyltransferase enzyme, and genes coding for efflux pumps (*qepA*, *oqxAB*).<sup>18, 19</sup> *oqxAB* genes are intrinsic in *Klebsiella* and *Enterobacter*.

#### Salmonella species

Ciprofloxacin resistance (MIC > 0.06 mg/L) among non-typhoidal species was 13.4% (13/97 confirmed). For the typhoidal species, 84.2% (32/38) were resistant, comprising 28/34 (82.4%) S. Typhi and all S. Paratyphi A (n = 4) (Table 25).

| Ciprofloxacin minimum inhibitory concentration (mg/L) |       |       |      |     |    |   |    |       |
|-------------------------------------------------------|-------|-------|------|-----|----|---|----|-------|
| Organism                                              | ≤0.06 | 0.125 | 0.25 | 0.5 | 1  | 2 | ≥4 | Total |
| Salmonella species (non-typhoidal)                    | 84    | 1     | 1    | 3   | 3  | 3 | 2  | 99    |
| Salmonella species (typhoidal)                        | 6     | 0     | 6    | 8   | 12 | 0 | 6  | 36    |
| S. Typhi                                              | 6     | 0     | 6    | 7   | 9  | 0 | 6  | 34    |
| S. Paratyphi A                                        | 0     | 0     | 0    | 1   | 3  | 0 | 0  | 4     |
| Total                                                 | 90    | 1     | 7    | 11  | 15 | 3 | 8  | 135   |

Table 25: Salmonella species, ciprofloxacin minimum inhibitory concentrations, AGAR, 2022

Notes:

1. MICs determined using MIC strips on Salmonella where Vitek® MIC ≤0.25 mg/L.

 For some laboratories using EUCAST interpretative criteria, a perfloxacin disc was used to screen for ciprofloxacin resistance. If susceptible to a 5 mg/L disc, the isolate was recorded as MIC≤ 0.06 mg/L (susceptible).

All typhoidal isolates that were resistant to ciprofloxacin harboured a mutation in the QRDR of *gyrA*, either in codon 83 (n = 30) codon 87 (n = 1), known mutations conferring quinolone resistance (Table 26).<sup>20</sup>

ESBL genes were also confirmed in six Salmonella isolates with QRDR mutations:  $bla_{CTX-M-15}$  (n = 3, typhoidal species)  $bla_{CTX-M-55}$  (n = 3, non-typhoidal species).

**Table 26:** Fluroquinolone resistance determinants in ciprofloxacin-resistant Salmonella species, AGAR, 2022

|                            |            | Mutations in QRDR |       |               |       |  |
|----------------------------|------------|-------------------|-------|---------------|-------|--|
| Species                    | gyrA       | parC              | parE  | PMQR<br>genes | Total |  |
| Salmonella (non-typhoidal) |            |                   |       |               | 11    |  |
|                            | _*         | T57S              | _*    | qnrB19        | 3     |  |
|                            | S83Y       | _*                | _*    | _*            | 2     |  |
|                            | S83Y       | T57S              | _*    | qnrS1         | 2     |  |
|                            | S83F       | T57S              | _*    | _*            | 1     |  |
|                            | D87Y       | _*                | _*    | _*            | 1     |  |
|                            | S83F, D87N | S80I              | _*    | _*            | 1     |  |
|                            | S83F, D87Y | T57S, S80I        | _*    | _*            | 1     |  |
| Salmonella (typhoidal)     |            |                   |       |               | 31    |  |
| S. Typhi ( <i>n</i> = 28)  | S83F       | _*                | _*    | _*            | 19    |  |
|                            | S83F       | _*                | _*    | qnrS1         | 3     |  |
|                            | S83F, D87N | S80I              | _*    | _*            | 2     |  |
|                            | D87N       | _*                | L416F | _*            | 1     |  |
|                            | S83F       | S80I              | _*    | _*            | 1     |  |
|                            | S83Y       | _*                | _*    | _*            | 1     |  |
|                            | S83Y       | E84G              | _*    | _*            | 1     |  |
| S. Paratyphi A (n = 3)     | S83F       | T57S              | _*    | _*            | 3     |  |
|                            |            |                   |       |               |       |  |

PMQR = plasmid-mediated quinolone resistance; QRDR = quinolone resistance-determining region

\* Not detected

Notes:

 Fluoroquinolone resistant determinants include mutations in either the QRDR of the DNA gyrase and/or topoisomerase genes (gyrA, gyrB, parC, parE) identified by PointFinder<sup>21</sup>, and/or presence of plasmid-mediated quinolone resistance genes (qnr variants, aac(6')-lb-cr, qepA).

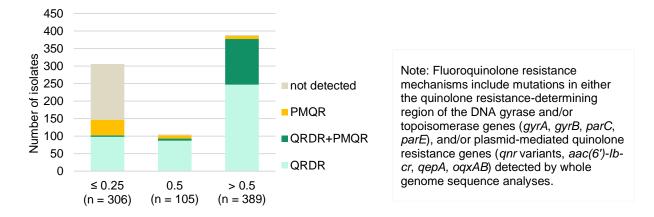
2. Mutations in gyrB were not detected.

#### Escherichia coli

Nationally, 17.4% (917/5,259) of *E. coli* had a ciprofloxacin MIC >0.25 mg/L, ranging from 8.2% (19/231) in Tasmania to 24.7% in the Northern Territory (42/170; Table 27). A subset of 801 *E. coli* (15.2% of total) was referred and underwent WGS. This included 723 with an ESBL phenotype and 494 with ciprofloxacin MIC >0.25 mg/L (Table 27).

|        |           | Cip          | profloxacin MIC (mg | g/L)       |       |            |
|--------|-----------|--------------|---------------------|------------|-------|------------|
| Subset | Phenotype | ≤0.25        | 0.5                 | >0.5       | Total | % of total |
| Total  | ESBL      | 35.0 (265)   | 14.6 (111)          | 50.4 (382) | 758   | 14.4       |
|        | non-ESBL  | 90.6 (4,077) | 1.9 (85)            | 7.5 (339)  | 4,501 | 85.6       |
|        | Total     | 82.6 (4,342) | 3.7 (196)           | 13.7 (721) | 5,259 |            |
| WGS    | ESBL      | 254          | 105                 | 364        | 723   |            |
|        | non-ESBL  | 53           | 0                   | 25         | 78    |            |
|        | Total     | 307          | 105                 | 389        | 801   |            |

Table 27: Escherichia coli, ciprofloxacin susceptibility, ESBL phenotype, AGAR, 2022


 $\mathsf{ESBL} = \mathsf{extended}\mathsf{-}\mathsf{spectrum}\ \beta\mathsf{-}\mathsf{lactamase};\ \mathsf{MIC} = \mathsf{minimum}\ \mathsf{inhibitory}\ \mathsf{concentration};\ \mathsf{n/a} = \mathsf{not}\ \mathsf{applicable};\ \mathsf{WGS} = \mathsf{whole}\ \mathsf{genome}\ \mathsf{sequencing}$ 

Note: ESBL phenotype = ceftriaxone or ceftazidime MIC > 1 mg/L.

Almost all (488/494, 98.8%) of the *E. coli* subset that had ciprofloxacin MIC > 0.25 mg/L harboured fluoroquinolone resistance determinants (Figure 6). The vast majority (93.4%, 456/488) of this group harboured a QRDR mutation in codon 83 of *gyrA*. A substantial majority (82.5%, 311/377) of isolates resistant to ciprofloxacin (MIC > 0.5 mg/L) also had a second mutation in *gyrA* (codon 87), and 88.6% (334/377) showed at least one mutation in *parC* (Table 28).

PMQR genes (*qnr* variants) alone were more common in ciprofloxacin susceptible isolates. Of 63 *E. coli* with confirmed *qnr*, most had *qnrB* (n = 40, 63.5%), while some had *qnrS* (n = 21, 33.3%) or *qnrB* + *qnrS* (n = 2) (data not shown).

**Figure 6:** *Escherichia coli* (*n* = 800), fluoroquinolone resistance mechanisms, ciprofloxacin MIC, AGAR, 2022



MIC = minimum inhibitory concentration; PMQR = plasmid-mediated quinolone resistance; QRDR = quinolone resistance-determining region

A substantial majority (68.4%, 266/389) of the ciprofloxacin resistant *E. coli* belonged to either ST131 (n = 202, 51.9%) or ST1193 (n = 64, 16.5%), both with reported distinguishing *parE* mutations (I529L and L416F, respectively).<sup>22</sup> Almost one-quarter (24.2%, 94/389) harboured *aac*(*6'*)-*Ib-cr* (Table 28), almost all (95.7%, 90/94) of which harboured *bla*<sub>CTX-M-15</sub> (n = 89) or *bla*<sub>CTX-M-65</sub> (n = 1) (data not shown). Just over one half (87/165, 52.7%) of the ciprofloxacin resistant isolates with *bla*<sub>CTX-M-15</sub> belonged to the ST131-H30Rx clone (data not shown).

| QRDR mutations           |                    |                            |                          | Ciprofle | oxacin MI | C (mg/L) |         |
|--------------------------|--------------------|----------------------------|--------------------------|----------|-----------|----------|---------|
| gyrA                     | parC               | parE                       | -<br>PMQR                | ≤0.25    | 0.5       | >0.5     | Total   |
| _*                       | _*                 | _*                         | _*                       | 159      | 3         | 3        | 165     |
| _*                       | _*                 | _*                         | qnr                      | 45       | 9         | 9        | 63      |
| _*                       | _*                 | 1355T                      | _*                       | 1        | 0         | 0        | 1       |
| _*<br>*                  | _*<br>*            | 1355T                      | qnr<br>_*                | 1        | 0         | 0        | 1       |
| *                        | _*<br>_*           | 1529L<br>1529L             | <br>aac(6')_*Ib_*cr, qnr | 12<br>0  | 0<br>0    | 0<br>1   | 12<br>1 |
| *                        | _<br>_*            | 1529L                      | qnr                      | 1        | 0         | 0        | 1       |
| _*                       | S57T               | 1355T                      | _*                       | 1        | 0         | 0        | 1       |
| _*                       | S80I               | L416F                      | _*                       | 0        | 0         | 3        | 3       |
| _*                       | S80I               | S458A                      | _*                       | 0        | 0         | 1        | 1       |
| _*                       | S80I, E84V         | _*                         | _*                       | 0        | 0         | 4        | 4       |
| _*                       | S80I, E84V         | _*                         | aac(6')–*Ib–*cr          | 0        | 0         | 4        | 4       |
| _*                       | T57S               | *                          | _*                       | 1        | 0         | 0        | 1       |
| D87N                     | _*                 | _*                         | _*                       | 2        | 0         | 0        | 2       |
| D87Y                     | _*                 | _*                         | _*<br>_                  | 1        | 0         | 1        | 2       |
| D87Y                     | S57T<br>_*         | _*<br>_*                   | _*                       | 3        | 0         | 0        | 3       |
| S83A<br>S83L             | _*                 | _*                         | qnr<br>_*                | 2        | 1         | 1        | 4       |
| S83L<br>S83L             | _<br>_*            | <br>*                      | *                        | 1<br>44  | 0<br>23   | 0<br>7   | 1<br>74 |
| S83L                     | _<br>_*            | *                          | _<br>aac(6')_*Ib_*cr     | 44<br>0  | 0         | 7<br>1   | 1       |
| S83L                     | *                  | *                          | qnr                      | 0        | 5         | 11       | 16      |
| S83L                     | _*                 | D476N                      | -*                       | 1        | 0         | 0        | 1       |
| S83L                     | _*                 | 1529L                      | _*                       | 29       | 61        | 12       | 102     |
| S83L                     | _*                 | 1529L                      | qnr                      | 0        | 0         | 1        | 1       |
| S83L                     | _*                 | <mark>I529L</mark> , S458A | _*                       | 1        | 0         | 1        | 2       |
| S83L                     | _*                 | 1529L                      | _*                       | 0        | 2         | 2        | 4       |
| S83L                     | _*                 | S458A                      | _*                       | 0        | 0         | 5        | 5       |
| S83L                     | E84G               | _*                         | _*                       | 0        | 0         | 1        | 1       |
| S83L                     | S57T               | _*                         | <u>_*</u>                | 1        | 0         | 0        | 1       |
| S83L                     | S80I               | _*<br>_                    | _*                       | 0        | 0         | 5        | 5       |
| S83L                     | S801               | _*                         | qnr<br>_*                | 0        | 0         | 3        | 3       |
| S83L<br>S83L             | S80I, E84V<br>S80R | I529L<br>_*                | _*                       | 0<br>0   | 0<br>0    | 1<br>1   | 1       |
| S83L, D87G               | S801               | *                          | _<br>_*                  | 0        | 0         | 1        | 1       |
| S83L, D87N               | S57T, S80I         | *                          | _*                       | 0        | 0         | 1        | 1       |
| S83L, D87N               | S57T, S80I         | S458A                      | _*                       | 0        | 0         | 1        | 1       |
| S83L, D87N               | S57T, S80I         | S458A                      | aac(6')–*Ib–*cr          | 0        | 0         | 2        | 2       |
| S83L, D87N               | S801               | _*                         | _*                       | 1        | 0         | 5        | 6       |
| S83L, D87N               | S80I               | _*                         | qnr                      | 0        | 0         | 2        | 2       |
| S83L, D87N               | S80I               | E460D                      | _*                       | 0        | 0         | 6        | 6       |
| S83L, D87N               | S80I               | L416F                      | _*                       | 0        | 0         | 51       | 51      |
| S83L, D87N               | S80I               | L416F                      | aac(6')–*Ib–*cr          | 0        | 0         | 12       | 12      |
| S83L, D87N               | S80I               | L416F                      | qnr                      | 0        | 0         | 6        | 6       |
| S83L, D87N               | S80I               | L445H                      | _*<br>_*                 | 0        | 0         | 1        | 1       |
| S83L, D87N               | S801               | S458A<br>S458A             |                          | 0        | 1         | 16<br>12 | 17      |
| S83L, D87N<br>S83L, D87N | S80I<br>S80I       | S458A<br>S458A             | aac(6')–*Ib–*cr          | 0<br>0   | 0<br>0    | 12<br>3  | 12<br>3 |
| S83L, D87N<br>S83L, D87N | S80I, E84G         | _*                         | qnr<br>_*                | 0        | 0         | 1        | 3<br>1  |
| S83L, D87N               | S80I, E84V         | _*                         | _*                       | 0        | 0         | 2        | 2       |
| S83L, D87N               | S80I, E84V         | 1529L                      | _*                       | 0        | 0         | 113      | 113     |
| S83L, D87N               | S80I, E84V         | 1529L                      | aac(6')–*lb–*cr          | 0        | 0         | 60       | 60      |
| S83L, D87N               | S80I, E84V         | 1529L                      | qnr                      | 0        | 0         | 6        | 6       |
| S83L, D87N               | S80R               | _*                         | qnr                      | 0        | 0         | 1        | 1       |
| S83L, D87V               | S80I               | _*                         | qnr                      | 0        | 0         | 1        | 1       |
| S83L, D87Y               | S80I               | _*                         | _*                       | 0        | 0         | 1        | 1       |
| S83L, D87Y               | S80I               | _*                         | aac(6')*lb*cr            | 0        | 0         | 1        | 1       |
| S83L, D87Y               | S80I               | S458A                      | _*                       | 0        | 0         | 2        | 2       |
| S83L, D87Y               | S80I               | S458A                      | aac(6')–*Ib–*cr          | 0        | 0         | 1        | 1       |
| S83L, D87Y               | S80I               | S458A                      | qnr                      | 0        | 0         | 1        | 1       |

#### Table 28: Fluoroquinolone resistance determinants in Escherichia coli, AGAR, 2022

| QRDR mutations |            |       |      | Ciprofle | oxacin MI | C (mg/L) |       |
|----------------|------------|-------|------|----------|-----------|----------|-------|
| gyrA           | parC       | parE  | PMQR | ≤0.25    | 0.5       | >0.5     | Total |
| S83L, D87Y     | S80I, E84V | 1529L | _*   | 0        | 0         | 2        | 2     |
| Total          |            |       |      | 307      | 105       | 389      | 801   |

MIC = minimum inhibitory concentration; PMQR = plasmid-mediated quinolone resistance; QRDR = quinolone resistance-determining region

Not detected

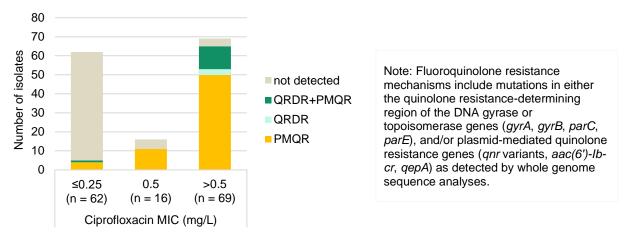
Notes:

- Fluoroquinolone resistant determinants include mutations in either the QRDR of the DNA gyrase and/or topoisomerase genes (gyrA, gyrB, parC, parE) identified by PointFinder<sup>21</sup>, and/or presence of plasmid-mediated quinolone resistance genes (qnr variants, aac(6')-lb-cr, qepA, oqxAB) detected by whole genome sequence analysis.
- 2. Bold formatting highlights ST131 (blue) and ST1193 (red) isolates.
- 3. No mutations in gyrB were detected.

#### Klebsiella pneumoniae complex

Nationally, 9.9% (139/1,401) of *K. pneumoniae* complex isolates had a ciprofloxacin MIC >0.25 mg/L, ranging from 4.8% in South Australia (4/83) to 23.1% in the Northern Territory (12/52) (Table 29). A subset of 147 *K. pneumoniae* complex (10.6% of total) was referred and underwent WGS. This included 103 with an ESBL phenotype and 85 with ciprofloxacin MIC >0.25 mg/L (Table 29).

|        |           | Cip          |           | % of total |       |             |
|--------|-----------|--------------|-----------|------------|-------|-------------|
| Subset | Phenotype | ≤0.25        | 0.5       | >0.5       | Total | 70 OI 10141 |
| Total  | ESBL      | 26.7 (28)    | 11.4 (12) | 61.9 (65)  | 105   | 7.5         |
|        | non-ESBL  | 95.3 (1,225) | 1.3 (17)  | 3.4 (44)   | 1,286 | 92.5        |
|        | Total     | 90.1 (1,253) | 2.1 (29)  | 7.8 (109)  | 1,391 |             |
| WGS    | ESBL      | 27           | 12        | 64         | 103   |             |
|        | non-ESBL  | 35           | 4         | 5          | 44    |             |
|        | Total     | 62           | 16        | 69         | 147   |             |


 $\mathsf{ESBL} = \mathsf{extended}\mathsf{-}\mathsf{spectrum}\ \beta\mathsf{-}\mathsf{lactamase};\ \mathsf{MIC} = \mathsf{minimum}\ \mathsf{inhibitory}\ \mathsf{concentration};\ \mathsf{n/a} = \mathsf{not}\ \mathsf{applicable};\ \mathsf{WGS} = \mathsf{whole}\ \mathsf{genome}\ \mathsf{sequencing}$ 

Note: ESBL phenotype = ceftriaxone or ceftazidime MIC > 1 mg/L.

Of the *K. pneumoniae* complex subset that had ciprofloxacin MIC >0.25 mg/L, 89.4% (76/85) harboured fluoroquinolone resistance determinants (Figure 7). PMQR genes either alone (71.8%, 61/85) or in combination with QRDR mutations in codon 83 of *gyrA* (14.1%, 12/85) were prevalent; only 3/85 had *gyrA* mutations alone. One *K. pneumoniae* complex harboured a *parE* mutation (ciprofloxacin MIC > 0.5 mg/L (Table 30).

In *K. pneumoniae* complex isolates, when PMQR genes (*qnr* variants) were found alone (39/65, 60.0%) they were usually in isolates with ciprofloxacin MIC >0.25 mg/L (37/39, 94.9%). In 39 *K. pneumoniae* complex isolates with confirmed *qnr*, most had *qnrS* (n = 27, 69.2%), while some had *qnrB* (n = 11) or *qnrA* (n = 1).

**Figure 7:** *Klebsiella pneumoniae* complex (n = 147), fluoroquinolone resistance mechanisms, ciprofloxacin MIC, AGAR, 2022



MIC = minimum inhibitory concentration; PMQR = plasmid-mediated quinolone resistance; QRDR = quinolone resistance-determining region

| QRDR m     | utations |                    | Ciproflo | xacin MIC | (mg/L) |       |
|------------|----------|--------------------|----------|-----------|--------|-------|
| gyrA       | parE     | PMQR               | ≤0.25    | 0.5       | >0.5   | Total |
| _*         | _*       | _*                 | 57       | 5         | 4      | 66    |
| _*         | _*       | aac(6')-Ib-cr      | 2        | 0         | 1      | 3     |
| _*         | _*       | aac(6')-Ib-cr, qnr | 0        | 0         | 23     | 23    |
| _*         | _*       | qnr                | 2        | 11        | 26     | 39    |
| _*         | 1529L    | aac(6')-Ib-cr, qnr | 0        | 0         | 1      | 1     |
| D87Y       | _*       | _*                 | 0        | 0         | 1      | 1     |
| S83F       | _*       | qnr                | 0        | 0         | 1      | 1     |
| S83F, D87A | _*       | aac(6')-Ib-cr, qnr | 0        | 0         | 2      | 2     |
| S83I       | _*       | _*                 | 0        | 0         | 1      | 1     |
| S83I       | _*       | aac(6')-Ib-cr      | 0        | 0         | 2      | 2     |
| S83I       | _*       | aac(6')-Ib-cr, qnr | 0        | 0         | 1      | 1     |
| S83I       | _*       | qnr                | 0        | 0         | 1      | 1     |
| S83Y       | _*       | _*                 | 0        | 0         | 1      | 1     |
| S83Y       | _*       | aac(6')-Ib-cr      | 1        | 0         | 4      | 5     |
| Fotal      |          |                    | 62       | 16        | 69     | 147   |

| <b>Table 30:</b> Fluroquinolone resistance determinants in <i>Klebsiella pneumoniae</i> complex, AGAR, 2022 | Table 30: Fluroquinolon | e resistance determinants in | Klebsiella pneumoniae co | mplex, AGAR, 2022 |
|-------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|--------------------------|-------------------|
|-------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|--------------------------|-------------------|

PMQR = plasmid-mediated quinolone resistance; QRDR = quinolone resistance-determining region

Not detected

Notes:

Fluoroquinolone resistant determinants include mutations in either the QRDR of the DNA gyrase and/or topoisomerase genes (gyrA, gyrB, parC, parE) identified by PointFinder<sup>21</sup>, and/or presence of plasmid-mediated quinolone resistance genes (qnr variants, aac(6')-lb-cr, qepA) detected by whole genome sequence analysis.

2. Mutations in gyrB or parC were not detected.

#### Pseudomonas aeruginosa

Of 49 *P. aeruginosa* isolates referred for sequencing eight harboured QRDR mutations, in codon 83 of *gyrA* (T83I, n = 6; T83A, n = 1). One isolate with a T83I mutation also had a second mutation in codon 87 (S87L). The ciprofloxacin MIC for all these isolates was  $\geq 2 \text{ mg/L}$ . No PMQR genes were detected.

### 3.9.5. Plasmid-mediated colistin determinants

Four *E. cloacae* complex isolates with the  $bla_{IMP-4}$  carbapenemase gene (*E. hormaechei*, n = 3; *E. cloacae*, n = 1) also harboured *mcr-9.1*.

Fourteen additional isolates (*E. cloacae* complex, n = 13; *K. pneumoniae*, n = 1) that did not carry a carbapenemase gene had either *mcr-9* (n = 8) or *mcr-10* (n = 6). *mcr-9* has recently been found among several species of *Enterobacterales*. It is not associated with a resistant phenotype<sup>23</sup>, but is typically carried on HI2 plasmids.<sup>24, 25</sup>

### 3.9.6. Ribosomal methyltransferases

Simultaneous resistance to gentamicin, tobramycin and/or amikacin is often due to ribosomal methyltransferases (RMT), which are frequently coproduced with ESBL and carbapenemases.<sup>26, 27</sup>

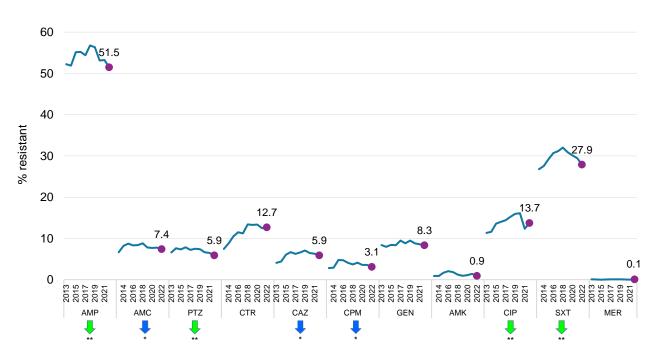
In the 2022 survey, three *Enterobacterales* were resistant to amikacin (MIC > 32 mg/L), gentamicin (MIC > 8 mg/L) and tobramycin (MIC > 8 mg/L). RMT genes were detected in all three; one *E. coli* with *rmtB1*, one *E. coli* with *armA* and one *K. pneumoniae* complex isolate with *rmtC*. All also carried a *bla*<sub>CTX-M</sub> gene.

Two *A. baumannii* complex isolates that carried *bla*<sub>OXA-23</sub> also harboured *armA*. One P. *aeruginosa* that carried *bla*<sub>NDM-1</sub> also harboured *rmtB4*.

# 3.10.Trend analysis (2013-2022)

Trend data are available for *Enterobacterales* for the 10-year period 2013 to 2022. *Acinetobacter* species and *P. aeruginosa* were introduced into the program in 2015.

EUCAST interpretive criteria have been used throughout, with the notable exception of amoxicillinclavulanic acid. Ninety percent of the pathology services used Vitek® cards which have the CLSI formulation (2:1 ratio) for interpretation for susceptibility for this agent.


#### Escherichia coli

#### National

The percentage of resistant *E. coli* in 2022 was similar to 2021 for all antimicrobial agents tested, except for ciprofloxacin, where a 11.1% increase in resistance was seen relative to 2021 (606/4910, 12.3% in 2021, 721/5259, 13.7% in 2022; P = 0.0421) (Figure 8).

Rates of resistance to key antimicrobial agents over the past five years (2018–2022) decreased for ampicillin (X<sup>2</sup> for linear trend = 36.82, P < 0.01), trimethoprim-sulfamethoxazole (X<sup>2</sup> for linear trend = 22.48, P < 0.01), ciprofloxacin (X<sup>2</sup> for linear trend = 17.47, P < 0.01), and piperacillin-tazobactam (X<sup>2</sup> for linear trend = 12.91, P < 0.01) (Figure 8).

**Figure 8.** *Escherichia coli* resistance to key antimicrobials (EUCAST), bloodstream isolates, AGAR, 2013–2022



AMC = amoxicillin–clavulanic acid (2:1 ratio); AMK = amikacin; AMP = ampicillin; CAZ = ceftazidime; CIP = ciprofloxacin; CPM = cefepime; CTR = ceftriaxone; EUCAST = European Committee on Antimicrobial Susceptibility Testing; GEN = gentamicin; MER = meropenem; PTZ = piperacillin–tazobactam; SXT = trimethoprim-sulfamethoxazole

#### Notes:

- 1. Percentage resistance determined using EUCAST 2023 breakpoints for all years. Numbers adjacent to filled circles are those for 2022.
- Arrows indicate antimicrobial agents for which there was a significant decrease in resistance over the past five years (2018 to 2022). Green (P < 0.01, \*\*); blue (0.01 < P < 0.05, \*).</li>

#### State and territory

In 2022, fluoroquinolone resistance in *E. coli* increased in three states and territories relative to 2021, most notably in New South Wales (2021, 12.1%; 2022, 16.4%, up 35.4%, P < 0.01) and South Australia (2021, 8.5%; 2022, 14.6%, up 71.3%, P < 0.01). There was an increase in third-generation cephalosporin resistance in the Northern Territory (2021, 13.4%; 2022, 28.8%, up 115%, P < 0.01), and an increase in aminoglycoside resistance in South Australia (2021, 8.1%; 2022, 12.3%, up 52.5%, P = 0.0368).

There were significantly decreasing trends in fluoroquinolone resistance in *E. coli* over the past five years (2018-2022) in Victoria (X<sup>2</sup> for linear trend = 17.05, P = <0.01), Western Australian (X<sup>2</sup> for linear trend = 10.45, P = 0.0012) and the Australian Capital Territory (X<sup>2</sup> for linear trend = 7.438, P = 0.0064) (Table 31).

There was a significantly decreasing trend in third-generation cephalosporin resistance in *E. coli* over the past five years (2018-2022) in Victoria ( $X^2$  for linear trend = 16.91, *P* < 0.01) (Table 32).

Over the past five years (2018-2022) aminoglycoside resistance in *E. coli* decreased in Victoria ( $X^2$  for linear trend = 19.74, *P* < 0.01) (Table 33).

**Table 31:** *Escherichia coli*, percentage resistant to ciprofloxacin (EUCAST) and number tested, state and territory, AGAR, 2013–2022

|                           |                 |                 |                 | Percen          | tage resis          | stant, ( <i>n</i> )  | by year              |                      |                     |                        | Trend             |
|---------------------------|-----------------|-----------------|-----------------|-----------------|---------------------|----------------------|----------------------|----------------------|---------------------|------------------------|-------------------|
| State<br>and<br>territory | 2013            | 2014            | 2015            | 2016            | 2017                | 2018                 | 2019                 | 2020                 | 2021                | 2022                   | 2018–<br>2022*    |
| Tas                       | 6.3<br>(79)     | 7.6<br>(79)     | 7.6<br>(79)     | 10.7<br>(168)   | 5.7<br>(174)        | 7.6<br>(184)         | 12.9<br>(201)        | 8.0<br>(201)         | 10.6<br>(218)       | 6.9<br>(231)           | $\leftrightarrow$ |
| Qld                       | 8.1<br>(652)    | 7.1<br>(742)    | 8.7<br>(691)    | 9.0<br>(811)    | 12.9<br>(858)       | 10.3<br>(868)        | 10.4<br>(817)        | 11.6<br>(628)        | 8.6<br>(686)        | 10.0<br>(711)          | $\leftrightarrow$ |
| ACT                       | 13.6<br>(118)   | 12.5<br>(168)   | 10.7<br>(149)   | 13.6<br>(154)   | 12.0<br>(158)       | <b>17.8</b><br>(157) | <b>20.5</b><br>(185) | <b>15.2</b><br>(198) | <b>13.6</b> (206)   | <b>10.0</b><br>(190)   | ▼**               |
| Vic                       | 11.7<br>(530)   | 16.2<br>(722)   | 14.4<br>(727)   | 15.7<br>(709)   | 15.6<br>(794)       | <b>18.1</b><br>(770) | <b>18.3</b><br>(919) | <b>20.0</b> (899)    | <b>13.2</b> (1,085) | <b>13.1</b><br>(1,053) | <b>*</b> *        |
| WA                        | 13.9<br>(524)   | 12.7<br>(510)   | 16.2<br>(650)   | 15.7<br>(677)   | 16.2<br>(770)       | <b>20.5</b> (801)    | <b>17.3</b> (736)    | <b>17.5</b><br>(776) | <b>16.2</b> (740)   | 14.0<br>(695)          | <b>*</b> *        |
| SA                        | 10.6<br>(379)   | 10.9<br>(386)   | 9.0<br>(454)    | 13.3<br>(429)   | 8.3<br>(288)        | 11.6<br>(405)        | 13.9<br>(440)        | 9.8<br>(479)         | 8.5<br>(470)        | 14.6<br>(439)          | $\leftrightarrow$ |
| NT                        | 10.3<br>(78)    | 8.2<br>(97)     | 9.5<br>(137)    | 9.8<br>(153)    | 15.6<br>(141)       | 12.5<br>(160)        | 20.0<br>(205)        | 20.8<br>(197)        | 17.0<br>(224)       | 15.3<br>(170)          | $\leftrightarrow$ |
| NSW                       | 13.2<br>(555)   | 11.8<br>(781)   | 17.7<br>(1,107) | 17.3<br>(993)   | 16.3<br>(1,170)     | 15.8<br>(1,224)      | 16.9<br>(1,379)      | 17.5<br>(1,492)      | 12.1<br>(1,281)     | 16.4<br>(1,770)        | $\leftrightarrow$ |
| Australia                 | 11.3<br>(2,915) | 11.6<br>(3,485) | 13.6<br>(3,994) | 14.0<br>(4,094) | <b>14.4</b> (4,353) | <b>15.2</b> (4,569)  | <b>16.0</b> (4,882)  | <b>16.1</b> (4,870)  | <b>12.3</b> (4,910) | <b>13.7</b> (5,259)    | ▼**               |

\* Chi-square test for trend for past five years (2018–2022), **bold** text significant decrease  $\mathbf{V}$  (P < 0.01, \*\*),  $\leftrightarrow$  no significant difference Note: Percentage resistance determined using EUCAST 2023 breakpoints for all years. **Table 32:** *Escherichia coli*, percentage resistant to ceftriaxone and/or ceftazidime (EUCAST) and number tested, state and territory, AGAR, 2013–2022

|                           |                |                |                 | Percen          | tage resis      | stant, ( <i>n</i> )  | by year              |                      |                        |                        | Trend             |
|---------------------------|----------------|----------------|-----------------|-----------------|-----------------|----------------------|----------------------|----------------------|------------------------|------------------------|-------------------|
| State<br>and<br>territory | 2013           | 2014           | 2015            | 2016            | 2017            | 2018                 | 2019                 | 2020                 | 2021                   | 2022                   | 2018–<br>2022*    |
| Tas                       | 1.3<br>(80)    | 10.1<br>(79)   | 0.0<br>(79)     | 6.5<br>(168)    | 5.2<br>(174)    | 7.6<br>(184)         | 7.0<br>(201)         | 6.0<br>(201)         | 6.0<br>(218)           | 5.2<br>(231)           | $\leftrightarrow$ |
| Qld                       | 5.4<br>(652)   | 7.1<br>(742)   | 6.1<br>(691)    | 8.1<br>(811)    | 9.4<br>(858)    | 11.5<br>(868)        | 8.4<br>(817)         | 8.9<br>(628)         | 10.6<br>(686)          | 11.0<br>(711)          | $\leftrightarrow$ |
| Vic                       | 11.1<br>(530)  | 13.0<br>(722)  | 12.5<br>(727)   | 13.7<br>(709)   | 14.2<br>(794)   | <b>17.1</b><br>(770) | <b>16.9</b><br>(922) | <b>17.0</b><br>(899) | <b>13.5</b><br>(1,086) | <b>11.5</b><br>(1,054) | <b>*</b> *        |
| WA                        | 6.3<br>(524)   | 6.3<br>(510)   | 9.7<br>(650)    | 11.7<br>(677)   | 11.5<br>(771)   | 15.6<br>(801)        | 12.2<br>(736)        | 12.5<br>(776)        | 14.4<br>(741)          | 12.1<br>(695)          | $\leftrightarrow$ |
| SA                        | 5.5<br>(379)   | 6.2<br>(386)   | 7.5<br>(454)    | 12.3<br>(431)   | 4.8<br>(289)    | 9.1<br>(405)         | 12.5<br>(440)        | 9.2<br>(479)         | 11.9<br>(471)          | 12.5<br>(439)          | $\leftrightarrow$ |
| NSW                       | 11.2<br>(555)  | 10.0<br>(781)  | 15.4<br>(1,107) | 15.1<br>(993)   | 14.4<br>(1,170) | 13.5<br>(1,224)      | 15.4<br>(1,379)      | 15.7<br>(1,493)      | 14.1<br>(1,281)        | 14.6<br>(1,771)        | $\leftrightarrow$ |
| ACT                       | 5.1<br>(118)   | 8.9<br>(168)   | 10.7<br>(149)   | 9.7<br>(154)    | 12.0<br>(158)   | 12.7<br>(157)        | 16.7<br>(186)        | 13.1<br>(198)        | 13.1<br>(206)          | 16.8<br>(190)          | $\leftrightarrow$ |
| NT                        | 9.0<br>(78)    | 9.3<br>(97)    | 8.8<br>(137)    | 9.2<br>(153)    | 9.2<br>(141)    | 17.5<br>(160)        | 16.1<br>(205)        | 19.8<br>(197)        | 13.4<br>(224)          | 28.8<br>(170)          | $\leftrightarrow$ |
| Australia                 | 7.7<br>(2,916) | 9.0<br>(3,485) | 10.7<br>(3,994) | 11.8<br>(4,096) | 11.6<br>(4,355) | 13.6<br>(4,569)      | 13.5<br>(4,886)      | 13.6<br>(4,871)      | 12.9<br>(4,913)        | 13.1<br>(5,261)        | $\leftrightarrow$ |

\* Chi-square test for trend for past five years (2018–2022), **bold** text significant decrease ▼ (*P* < 0.01, \*\*), ↔ no significant difference</li>
 Note: Percentage resistance determined using EUCAST 2023 breakpoints for all years.

**Table 33:** *Escherichia coli*, percentage resistant to gentamicin and/or tobramycin (EUCAST) and number tested, state and territory, AGAR, 2013–2022

|                           |                |                |                 | Percen         | tage resis      | stant, ( <i>n</i> )  | by year              |                      |                       |                       | Trend             |
|---------------------------|----------------|----------------|-----------------|----------------|-----------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|-------------------|
| State<br>and<br>territory | 2013           | 2014           | 2015            | 2016           | 2017            | 2018                 | 2019                 | 2020                 | 2021                  | 2022                  | 2018–<br>2022*    |
| Tas                       | 2.5<br>(80)    | 8.9<br>(79)    | 2.5<br>(79)     | 6.0<br>(168)   | 3.4<br>(174)    | 3.8<br>(184)         | 7.0<br>(201)         | 4.5<br>(201)         | 3.2<br>(218)          | 3.9<br>(231)          | $\leftrightarrow$ |
| Vic                       | 11.9<br>(530)  | 10.9<br>(722)  | 10.2<br>(727)   | 9.3<br>(709)   | 12.8<br>(794)   | <b>10.5</b><br>(770) | <b>12.9</b><br>(922) | <b>11.8</b><br>(899) | <b>7.7</b><br>(1,086) | <b>6.7</b><br>(1,054) | ▼**               |
| ACT                       | 14.4<br>(118)  | 10.7<br>(168)  | 5.4<br>(149)    | 7.1<br>(154)   | 13.3<br>(158)   | 8.9<br>(157)         | 11.3<br>(186)        | 10.1<br>(198)        | 9.2<br>(206)          | 7.4<br>(190)          | $\leftrightarrow$ |
| Qld                       | 7.2<br>(652)   | 8.1<br>(742)   | 7.7<br>(691)    | 8.1<br>(811)   | 9.7<br>(858)    | 7.7<br>(868)         | 8.4<br>(817)         | 8.3<br>(628)         | 7.6<br>(686)          | 7.5<br>(711)          | $\leftrightarrow$ |
| WA                        | 9.2<br>(524)   | 7.8<br>(511)   | 11.8<br>(650)   | 14.8<br>(677)  | 12.2<br>(771)   | 13.0<br>(801)        | 9.6<br>(736)         | 9.7<br>(776)         | 11.6<br>(741)         | 8.8<br>(695)          | $\leftrightarrow$ |
| NSW                       | 11.0<br>(555)  | 9.5<br>(781)   | 11.4<br>(1,107) | 9.0<br>(993)   | 10.4<br>(1,170) | 10.8<br>(1,225)      | 10.4<br>(1,379)      | 9.7<br>(1,493)       | 10.1<br>(1,281)       | 9.5<br>(1,769)        | $\leftrightarrow$ |
| SA                        | 6.9<br>(378)   | 6.5<br>(386)   | 9.0<br>(454)    | 10.7<br>(431)  | 6.6<br>(289)    | 9.6<br>(405)         | 9.3<br>(440)         | 8.1<br>(479)         | 8.1<br>(471)          | 12.3<br>(439)         | $\leftrightarrow$ |
| NT                        | 14.1<br>(78)   | 15.5<br>(97)   | 11.7<br>(137)   | 12.4<br>(153)  | 12.8<br>(141)   | 16.9<br>(160)        | 18.5<br>(205)        | 20.8<br>(197)        | 17.4<br>(224)         | 22.9<br>(170)         | $\leftrightarrow$ |
| Australia                 | 9.4<br>(2,915) | 9.1<br>(3,486) | 9.9<br>(3,994)  | 9.9<br>(4,096) | 10.7<br>(4,355) | 10.3<br>(4,570)      | 10.6<br>(4,886)      | 10.0<br>(4,871)      | 9.3<br>(4,913)        | 8.9<br>(5,259)        | <b>*</b> *        |

\* Chi-square test for trend for past five years (2018–2022), **bold** text significant decrease  $\mathbf{\nabla}$  (*P*<0.01, \*\*),  $\leftrightarrow$  no significant difference Note: Percentage resistance determined using EUCAST 2023 breakpoints for all years

#### Klebsiella pneumoniae complex

#### National

The percentage of resistant *K. pneumoniae* complex isolates in 2022 was similar to that seen in 2021 (Figure 9).

Over the past five years (2018–2022), there was a significant decreasing trend in resistance to piperacillin-tazobactam (X<sup>2</sup> for linear trend = 40.27, P < 0.01), amoxicillin-clavulanic acid (X<sup>2</sup> for linear trend = 13.66, P < 0.01), trimethoprim-sulfamethoxazole (X<sup>2</sup> for linear trend = 23.00, P < 0.01), ciprofloxacin (X<sup>2</sup> for linear trend = 13.08, P < 0.01), cefepime (X<sup>2</sup> for linear trend = 8.994, P < 0.01), ceftriaxone (X<sup>2</sup> for linear trend = 8.848, P < 0.01), and amikacin (X<sup>2</sup> for linear trend = 8.553, P < 0.01) (Figure 9).

**Figure 9.** *Klebsiella pneumoniae* complex resistance to key antimicrobials (EUCAST), bloodstream isolates, AGAR, 2013–2022



AMC = amoxicillin–clavulanic acid (2:1 ratio); AMK = amikacin; CAZ = ceftazidime; CIP = ciprofloxacin; CPM = cefepime; CTR = ceftriaxone; EUCAST = European Committee on Antimicrobial Susceptibility Testing; GEN = gentamicin; MER = meropenem; PTZ = piperacillin–tazobactam; SXT = trimethoprim-sulfamethoxazole

#### Notes:

- 1. Percentage resistance determined using EUCAST 2023 breakpoints for all years. Numbers adjacent to filled circles are those for 2022.
- Arrows indicate antimicrobial agents for which there was a significant decrease in resistance over the past five years (2018 to 2022). Green (P < 0.01, \*\*); blue (0.01 < P < 0.05, \*).</li>

#### By state and territory

Four states and territories (Western Australia, Tasmania, Northern Territory and the Australian Capital Territory) had an increase in fluoroquinolone (Table 34), third-generation cephalosporin (Table 35), and aminoglycoside resistance (Table 36) in *K. pneumoniae* complex isolates in 2022, relative to 2021. The only notable change was a decline in fluoroquinolone resistance South Australia (2021, 9.6%; 2022, 2.4%; down 75.0%; P = 0.047).

Over the past five years (2018-2022), Victoria was the only state with significantly decreasing trends in fluoroquinolone (X<sup>2</sup> for linear trend = 37.54, P < 0.01), third generation cephalosporin (X<sup>2</sup> for linear trend = 30.99, P < 0.01), and aminoglycoside (X<sup>2</sup> for linear trend = 43.07, P < 0.01) resistance in *K. pneumoniae* complex isolates (Tables 34-36).

**Table 34:** *Klebsiella pneumoniae* complex, percentage resistant to ciprofloxacin (EUCAST) and number tested, state and territory, AGAR, 2013–2022

|                           |               |               |               | Perc          | entage res     | sistant, ( <i>n</i> )  | by year                |                       |                       |                       | Trend             |
|---------------------------|---------------|---------------|---------------|---------------|----------------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|-------------------|
| State<br>and<br>territory | 2013          | 2014          | 2015          | 2016          | 2017           | 2018                   | 2019                   | 2020                  | 2021                  | 2022                  | 2018–<br>2022*    |
| SA                        | 13.3<br>(75)  | 5.4<br>(74)   | 4.7<br>(85)   | 7.4<br>(81)   | 2.8<br>(71)    | 8.8<br>(91)            | 15.7<br>(89)           | 9.9<br>(81)           | 9.6<br>(114)          | 2.4<br>(83)           | $\leftrightarrow$ |
| Qld                       | 5.8<br>(207)  | 5.3<br>(208)  | 6.3<br>(189)  | 4.2<br>(189)  | 6.1<br>(246)   | 5.6<br>(270)           | 5.2<br>(249)           | 6.5<br>(185)          | 8.0<br>(201)          | 5.7<br>(227)          | $\leftrightarrow$ |
| Vic                       | 12.4<br>(145) | 10.3<br>(174) | 11.9<br>(177) | 13.3<br>(180) | 17.6<br>(199)  | <b>24.3</b><br>(214)   | <b>17.0</b><br>(212)   | <b>17.7</b><br>(209)  | <b>7.3</b> (260)      | <b>7.4</b> (282)      | ▼**               |
| Tas                       | 7.1<br>(14)   | 11.1<br>(9)   | 5.6<br>(18)   | 5.6<br>(36)   | 0.0<br>(30)    | 11.8<br>(34)           | 7.8<br>(51)            | 6.7<br>(30)           | 4.5<br>(44)           | 8.0<br>(50)           | $\leftrightarrow$ |
| NSW                       | 3.5<br>(113)  | 9.3<br>(205)  | 7.2<br>(236)  | 8.4<br>(226)  | 5.5<br>(293)   | 9.3<br>(301)           | 10.4<br>(347)          | 10.2<br>(371)         | 8.6<br>(337)          | 8.4<br>(443)          | $\leftrightarrow$ |
| WA                        | 4.8<br>(124)  | 4.7<br>(149)  | 5.9<br>(187)  | 2.8<br>(181)  | 6.3<br>(159)   | 7.5<br>(186)           | 5.0<br>(160)           | 2.6<br>(189)          | 3.9<br>(204)          | 8.5<br>(212)          | $\leftrightarrow$ |
| ACT                       | 4.5<br>(22)   | 7.7<br>(26)   | 5.7<br>(35)   | 5.3<br>(38)   | 7.7<br>(39)    | 8.3<br>(36)            | 8.3<br>(36)            | 13.2<br>(38)          | 4.3<br>(46)           | 11.9<br>(42)          | $\leftrightarrow$ |
| NT                        | 10.5<br>(19)  | 16.1<br>(31)  | 4.3<br>(47)   | 2.6<br>(38)   | 6.7<br>(30)    | 13.5<br>(37)           | 15.6<br>(45)           | 16.2<br>(37)          | 6.1<br>(33)           | 17.3<br>(52)          | $\leftrightarrow$ |
| Australia                 | 7.5<br>(719)  | 7.6<br>(876)  | 7.2<br>(974)  | 6.9<br>(969)  | 7.8<br>(1,067) | <b>11.0</b><br>(1,169) | <b>10.2</b><br>(1,189) | <b>9.9</b><br>(1,140) | <b>7.2</b><br>(1,239) | <b>7.8</b><br>(1,391) | ▼**               |

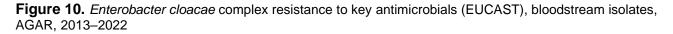
\* Chi-square test for trend for past five years (2018–2022), **bold** text significant decrease  $\mathbf{\nabla}$  (*P*<0.01, \*\*),  $\leftrightarrow$  no significant difference Note: Percentage resistance determined using EUCAST 2023 breakpoints for all years.

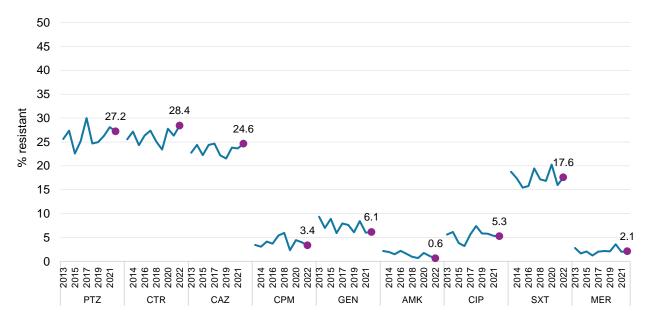
**Table 35:** *Klebsiella pneumoniae* complex, percentage resistant to ceftriaxone and/or ceftazidime (EUCAST) and number tested, state and territory, AGAR, 2013–2022

|                           |               |               |               | Perc          | entage res     | sistant, ( <i>n</i> ) | by year               |                       |                       |                       | Trend             |
|---------------------------|---------------|---------------|---------------|---------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------|
| State<br>and<br>territory | 2013          | 2014          | 2015          | 2016          | 2017           | 2018                  | 2019                  | 2020                  | 2021                  | 2022                  | 2018–<br>2022*    |
| Qld                       | 6.3<br>(207)  | 4.3<br>(208)  | 3.7<br>(189)  | 3.7<br>(189)  | 3.3<br>(246)   | 5.9<br>(270)          | 4.4<br>(249)          | 3.8<br>(185)          | 2.5<br>(201)          | 3.5<br>(227)          | $\leftrightarrow$ |
| SA                        | 2.7<br>(75)   | 4.1<br>(74)   | 3.5<br>(85)   | 7.4<br>(81)   | 5.6<br>(72)    | 9.9<br>(91)           | 9.0<br>(89)           | 7.4<br>(81)           | 6.1<br>(114)          | 4.8<br>(83)           | $\leftrightarrow$ |
| WA                        | 4.0<br>(124)  | 4.0<br>(149)  | 3.7<br>(187)  | 5.5<br>(181)  | 5.7<br>(159)   | 4.3<br>(186)          | 4.4<br>(160)          | 3.7<br>(189)          | 3.9<br>(204)          | 5.2<br>(212)          | $\leftrightarrow$ |
| Vic                       | 13.1<br>(145) | 10.9<br>(174) | 10.7<br>(177) | 13.9<br>(180) | 19.6<br>(199)  | <b>19.2</b><br>(214)  | <b>16.0</b><br>(212)  | <b>16.7</b><br>(210)  | <b>5.0</b><br>(260)   | <b>6.4</b><br>(282)   | <b>*</b> *        |
| Tas                       | 7.1<br>(14)   | 11.1<br>(9)   | 5.6<br>(18)   | 5.6<br>(36)   | 3.3<br>(30)    | 11.8<br>(34)          | 7.8<br>(51)           | 6.7<br>(30)           | 4.5<br>(44)           | 8.0<br>(50)           | $\leftrightarrow$ |
| NSW                       | 2.7<br>(113)  | 12.1<br>(206) | 7.6<br>(236)  | 9.7<br>(226)  | 7.5<br>(293)   | 8.9<br>(302)          | 9.8<br>(348)          | 9.2<br>(371)          | 12.2<br>(337)         | 8.1<br>(444)          | $\leftrightarrow$ |
| ACT                       | 0.0<br>(22)   | 11.5<br>(26)  | 2.9<br>(35)   | 2.6<br>(38)   | 10.3<br>(39)   | 5.6<br>(36)           | 11.1<br>(36)          | 7.9<br>(38)           | 4.3<br>(46)           | 9.5<br>(42)           | $\leftrightarrow$ |
| NT                        | 15.8<br>(19)  | 6.5<br>(31)   | 6.4<br>(47)   | 2.6<br>(38)   | 6.7<br>(30)    | 13.5<br>(37)          | 15.6<br>(45)          | 27.0<br>(37)          | 15.2<br>(33)          | 21.2<br>(52)          | $\leftrightarrow$ |
| Australia                 | 6.4<br>(719)  | 7.8<br>(877)  | 6.1<br>(974)  | 7.6<br>(969)  | 8.3<br>(1,068) | <b>9.6</b><br>(1,170) | <b>9.2</b><br>(1,190) | <b>9.1</b><br>(1,141) | <b>6.7</b><br>(1,239) | <b>6.9</b><br>(1,392) | ▼**               |

\* Chi-square test for trend for past five years (2018–2022), **bold** text significant decrease  $\mathbf{\nabla}$  (*P*<0.01, \*\*),  $\leftrightarrow$  no significant difference Note: Percentage resistance determined using EUCAST 2023 breakpoints for all years.

**Table 36:** *Klebsiella pneumoniae* complex, percentage resistant to gentamicin and/or tobramycin (EUCAST) and number tested, state and territory, AGAR, 2013–2022


|                           |               |               |              | Perc          | entage res     | sistant, ( <i>n</i> ) | by year               |                       |                       |                       | Trend             |
|---------------------------|---------------|---------------|--------------|---------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------|
| State<br>and<br>territory | 2013          | 2014          | 2015         | 2016          | 2017           | 2018                  | 2019                  | 2020                  | 2021                  | 2022                  | 2018–<br>2022*    |
| Tas                       | 7.1<br>(14)   | 11.1<br>(9)   | 11.1<br>(18) | 2.8<br>(36)   | 3.3<br>(30)    | 8.8<br>(34)           | 5.9<br>(51)           | 6.7<br>(30)           | 0.0<br>(44)           | 2.0<br>(50)           | $\leftrightarrow$ |
| Qld                       | 3.9<br>(207)  | 4.3<br>(208)  | 4.2<br>(189) | 3.7<br>(189)  | 3.3<br>(246)   | 3.0<br>(270)          | 2.4<br>(249)          | 2.7<br>(185)          | 3.5<br>(201)          | 2.2<br>(227)          | $\leftrightarrow$ |
| SA                        | 5.3<br>(75)   | 1.4<br>(74)   | 5.9<br>(85)  | 3.7<br>(81)   | 4.2<br>(72)    | 7.7<br>(91)           | 7.9<br>(89)           | 3.7<br>(81)           | 6.1<br>(114)          | 2.4<br>(83)           | $\leftrightarrow$ |
| WA                        | 3.2<br>(124)  | 2.7<br>(149)  | 3.2<br>(187) | 5.0<br>(181)  | 3.8<br>(159)   | 3.8<br>(186)          | 3.1<br>(160)          | 2.1<br>(189)          | 2.5<br>(204)          | 3.3<br>(212)          | $\leftrightarrow$ |
| Vic                       | 11.0<br>(145) | 9.8<br>(174)  | 7.9<br>(177) | 10.0<br>(180) | 15.6<br>(199)  | <b>18.7</b><br>(214)  | <b>14.2</b><br>(212)  | <b>11.0</b><br>(210)  | <b>4.6</b><br>(260)   | <b>3.5</b><br>(282)   | ▼**               |
| NSW                       | 2.7<br>(113)  | 11.2<br>(206) | 8.1<br>(236) | 6.2<br>(226)  | 5.5<br>(293)   | 5.0<br>(302)          | 9.5<br>(348)          | 8.9<br>(371)          | 5.9<br>(337)          | 5.6<br>(444)          | $\leftrightarrow$ |
| ACT                       | 0.0<br>(22)   | 7.7<br>(26)   | 2.9<br>(35)  | 2.6<br>(38)   | 7.7<br>(39)    | 8.3<br>(36)           | 11.1<br>(36)          | 5.3<br>(38)           | 4.3<br>(46)           | 11.9<br>(42)          | $\leftrightarrow$ |
| NT                        | 15.8<br>(19)  | 16.1<br>(31)  | 10.6<br>(47) | 2.6<br>(38)   | 6.7<br>(30)    | 16.2<br>(37)          | 13.3<br>(45)          | 24.3<br>(37)          | 9.1<br>(33)           | 13.5<br>(52)          | $\leftrightarrow$ |
| Australia                 | 5.4<br>(719)  | 7.1<br>(877)  | 6.2<br>(974) | 5.6<br>(969)  | 6.6<br>(1,068) | <b>7.6</b><br>(1,170) | <b>7.9</b><br>(1,190) | <b>7.1</b><br>(1,141) | <b>4.5</b><br>(1,239) | <b>4.5</b><br>(1,392) | ▼**               |


\* Chi-square test for trend for past five years (2018–2022), **bold** text significant decrease  $\mathbf{\nabla}$  (*P*<0.01, \*\*),  $\leftrightarrow$  no significant difference Note: Percentage resistance determined using EUCAST 2023 breakpoints for all years

#### Enterobacter cloacae complex

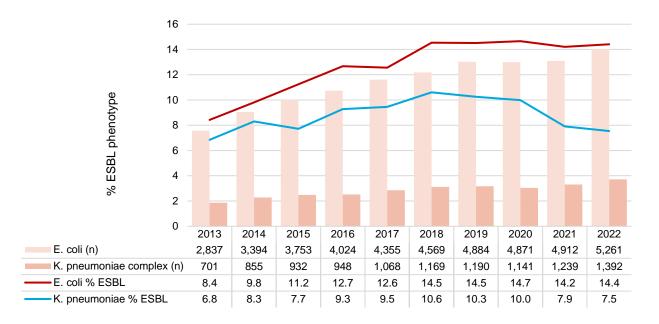
#### National

For *E. cloacae* complex isolates, the percentage resistance to all key antimicrobials in 2022 was similar to 2021. There were no significant trends of increasing or decreasing resistance in *E. cloacae* complex isolates over the past five-year period (2018–2022) (Figure 10).





AMK = amikacin; CAZ = ceftazidime; CIP = ciprofloxacin; CPM = cefepime; CTR = ceftriaxone; EUCAST = European Committee on Antimicrobial Susceptibility Testing; GEN = gentamicin; MER = meropenem; PTZ = piperacillin-tazobactam; SXT = trimethoprim-sulfamethoxazole

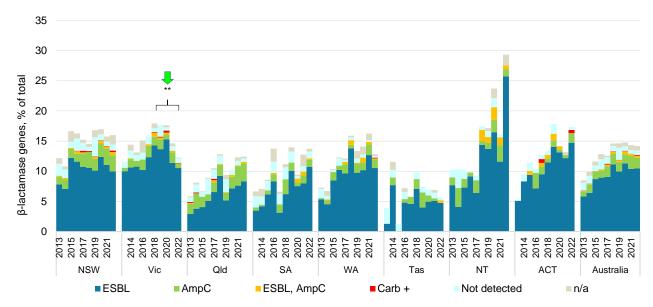

Notes: Percentage resistance determined using EUCAST 2023 breakpoints for all years. Filled circles indicate values for 2022.

#### Extended-spectrum β-lactamases

The frequency of *E. coli* with an ESBL phenotypes increased from 8.4% in 2013 to 14.4% in 2018 and has remained at steady at 14% since 2019. For *K. pneumoniae* complex isolates, the frequency of an ESBL phenotypes was lower than that observed among *E. coli* and increased from 6.8% in 2013 to 10% in 2018 to 2020, decreasing to 7.9% in 2021 and 7.5% in 2022 (Figure 11).

ESBL-type  $\beta$ -lactamase genes (alone or with other *bla* genes) continue to be the dominant  $\beta$ lactam resistance mechanism among *E. coli* and *K. pneumoniae* complex isolates with an ESBL phenotype, with considerable regional variation noted.

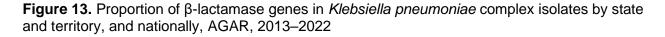
**Figure 11.** Ten-year trend in percent *Escherichia coli* and *Klebsiella pneumoniae* complex isolates with extended spectrum β-lactamase phenotype, AGAR, 2013–2022

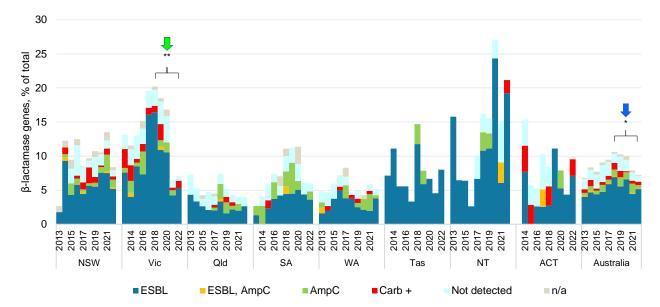



ESBL = extended-spectrum  $\beta$ -lactamase

Overall, in the 2022 survey, there was no change in the proportion of *E. coli* with confirmed ESBL genes relative to 2021 (2021: 524/4873, 10.8%; 2022: 566/5206, 10.8%). However, in the Northern Territory, the proportion of confirmed ESBL genes doubled (2021,12.9%; 2022, 26.3%, P < 0.01) (Figure 12). In *K. pneumoniae* complex isolates, the proportion of confirmed ESBL genes overall in 2022 increased by 19.2% relative to 2021 (2021: 57/1235, 4.6%; 2022: 77/1396, 5.5%).

Over the past five years (2018-2022), a significantly decreasing trend in the proportion of *E. coli* with confirmed ESBL-genes was seen in Victoria (X<sub>2</sub> for linear trend = 10.39, P < 0.01) (Figure 12). Victoria also had a significantly decreasing trend (X<sub>2</sub> for linear trend = 21.95, P < 0.01) for *K. pneumoniae* complex isolates (Figure 13).


**Figure 12.** Proportion of  $\beta$ -lactamase genes in *Escherichia coli*, by state and territory, and nationally, AGAR, 2013–2022




AmpC = plasmid-borne AmpC; Carb+ = carbapenemase with or without other  $\beta$ -lactamase genes; ESBL = extended spectrum  $\beta$ -lactamase; n/a = isolate not available for confirmation by WGS

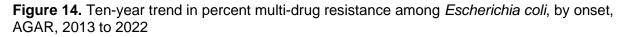
Notes:

- 1. β-lactamase genes (ESBL-types, AmpC, carbapenemase) detected among isolates with an ESBL phenotype.
- Green arrow indicates a significant decrease (P < 0.01, \*\*) over the past five years (2018 to 2022) seen in Victoria only.</li>





AmpC = plasmid-borne AmpC; Carb+ = carbapenemase with or without other  $\beta$ -lactamase genes; ESBL = extended spectrum  $\beta$ -lactamase; n/a = isolate not available for confirmation by WGS

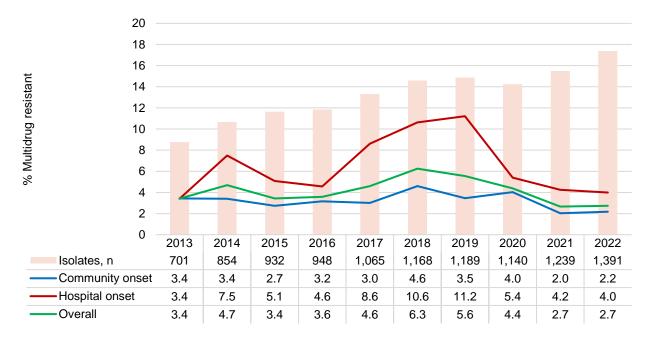

Notes:

- 1. β-lactamase genes (ESBL-types, AmpC, carbapenemase) detected among isolates with an ESBL phenotype.
- Arrows indicate states and territories where there was a significant decrease in proportion of β-lactamase genes over the past five years (2018 to 2022); green (P < 0.01, \*\*), blue (0.01 < P < 0.05, \*)</li>

#### **Multi-drug resistance**

In *E. coli*, the frequency of MDR to five key antimicrobial groups (aminopenicillins, fluoroquinolones, third-generation cephalosporins, aminoglycosides and carbapenems) increased from 8.2% in 2013 to 11.0% in 2017, remained steady at 12% from 2018 to 2020, and decreased to 9.9% in 2021 and 10.9% in 2022. It was highest among HO isolates (Figure 14). Although the rate of MDR among CO isolates increased in 2022 (10.3%) compared to 2021 (9.1%), the increase was not statistically significant.

For *K. pneumoniae* complex isolates, the frequency of MDR to fluoroquinolones, third-generation cephalosporins, aminoglycosides and carbapenems was more variable (Figure 15). For HO isolates, the highest frequency was observed from 2018 and 2019 (10.6%–11.2%). It fell sharply in 2020 to 5.4% and was 4.2% in 2021 and 4.0% in 2022. There was little change in frequency among CO isolates; the lowest rate was observed in 2021 (2.0%), down from 4.6% in 2018. It was 2.2% in 2022.






Notes:

- 1. Multi-drug resistance was defined as resistance to one or more agent in three or more antimicrobial categories.
- 2. Antimicrobial categories (agents) were aminoglycosides (gentamicin or tobramycin), carbapenems (meropenem), extended-spectrum cephalosporins (ceftriaxone or ceftazidime), fluoroquinolones (ciprofloxacin), and penicillins (ampicillin).

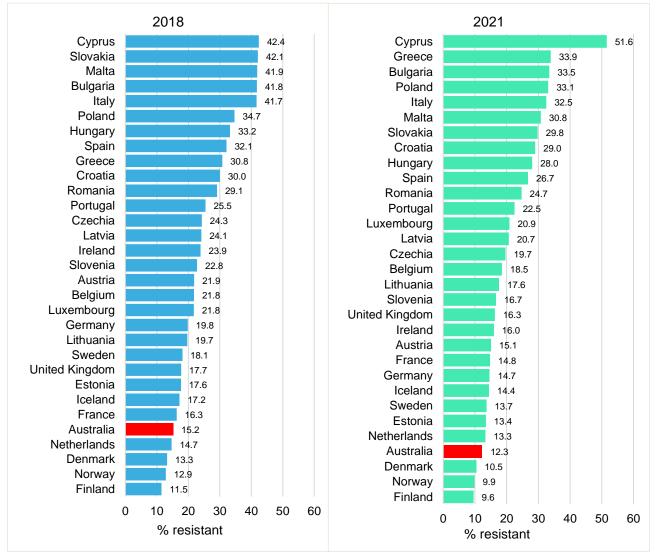
Figure 15. Ten-year trend in percent multi-drug resistance among *Klebsiella pneumoniae* complex isolates by onset, AGAR, 2013 to 2022



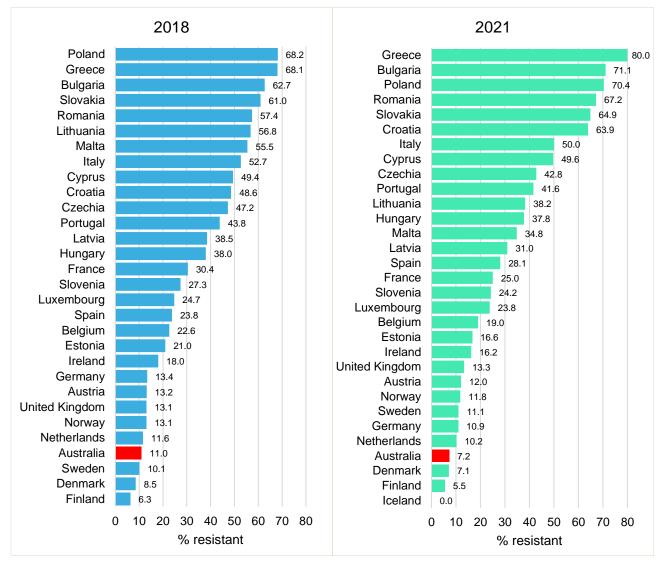
Notes:

1. Multi-drug resistance was defined as resistance to one or more agent in three or more antimicrobial categories.

2. Antimicrobial categories (agents) were aminoglycosides (gentamicin or tobramycin), carbapenems (meropenem), extended-spectrum cephalosporins (ceftriaxone or ceftazidime), fluoroquinolones (ciprofloxacin).


# 4.International comparisons

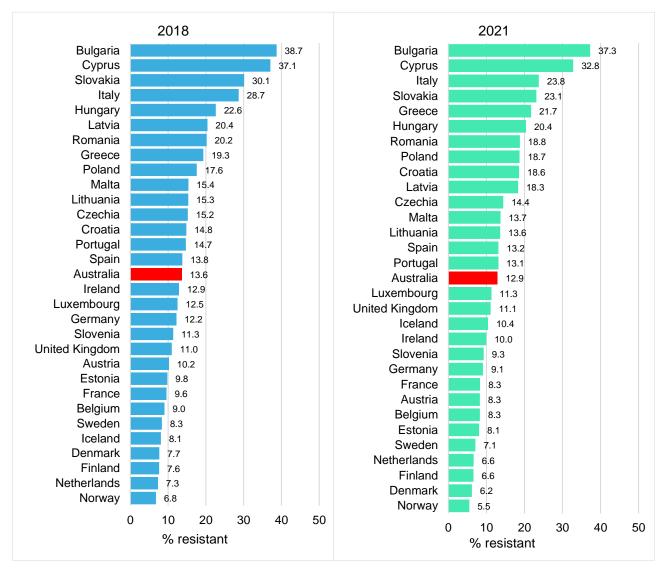
Data from AGAR can be compared with data from the European Antimicrobial Resistance Surveillance Network (EARs-Net) program<sup>28</sup>, and the World Health Organization (WHO) Central Asian and European Surveillance of Antimicrobial Resistance (CAESAR) network<sup>29</sup>, as all these surveillance systems review resistance in bacterial pathogens isolated from blood cultures. Data from 2022 was not available at the time of this report.


Rates of resistance to fluoroquinolones in *E. coli* and *K. pneumoniae* (represented by resistance to ciprofloxacin) remain low in Australia compared with most European countries (Figures 16 and 17). Australia ranked fifth lowest in rates of resistance to fluoroquinolones in *E. coli* compared with European countries in 2018 (15.2%), it was fourth lowest in 2021 (12.3%); in 2022 the rate was 13.7%. For *K. pneumoniae*, Australia ranked fourth lowest in 2018 (11.0%) and 2021 (7.2%); in 2022, the rate was 7.9%.

Australia now ranks towards the middle in rates of resistance to third-generation cephalosporins in *E. coli* compared to European countries. Third-generation cephalosporin resistance in *K. pneumoniae* is low by comparison (Figures 18 and 19).

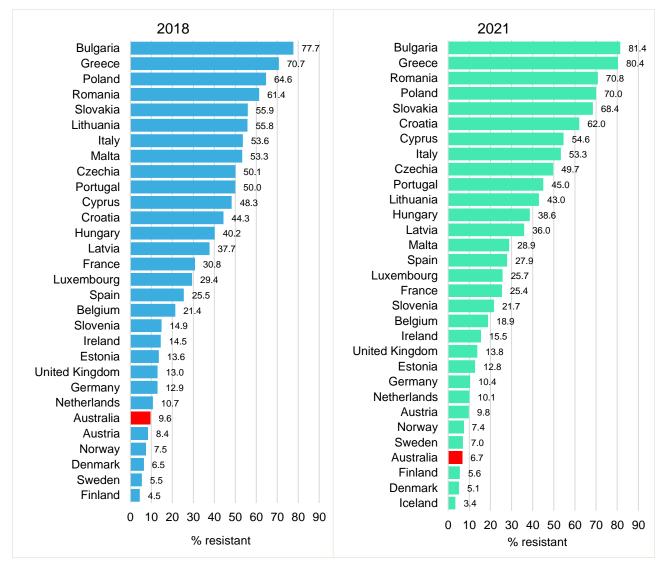
**Figure 16:** Comparison of *Escherichia coli* rates of resistance to ciprofloxacin in Australia (AGAR), European countries and the United Kingdom, blood culture isolates, 2018 and 2021




Source: EARS-Net (Europe)<sup>30, 31</sup>, CAESAR (United Kingdom)<sup>29</sup>



**Figure 17:** Comparison of *Klebsiella pneumoniae* rates of resistance to ciprofloxacin in Australia (AGAR), European countries and the United Kingdom, blood culture isolates, 2018 and 2021


Source: EARS-Net (Europe)<sup>30, 31</sup>, CAESAR (United Kingdom)<sup>29</sup>

**Figure 18:** Comparison of *Escherichia coli* rates of resistance to third-generation cephalosporins in Australia (AGAR), European countries and the United Kingdom, blood culture isolates, 2018 and 2021



Source: EARS-Net (Europe)<sup>30, 31</sup>, CAESAR (United Kingdom)<sup>29</sup>

**Figure 19:** Comparison of *Klebsiella pneumoniae* rates of resistance to third-generation cephalosporins in Australia (AGAR), European countries, and the United Kingdom, blood culture isolates, 2018 and 2021



Source: EARS-Net (Europe)<sup>30, 31</sup>, CAESAR (United Kingdom)<sup>29</sup>

# 5. Limitations of the study

Although this study is considered comprehensive in its coverage of Australia, and the methods follow international standards, the data and their interpretation have a number of limitations:

- The data are not denominator controlled, and there is currently no consensus on an appropriate denominator for such surveys; hospital size, patient throughput, patient complexity and local antibiotic use patterns all influence the types of resistance that are likely to be observed.
- Although data have been collected from 44 large hospitals, or for north-west Western Australia from 11 regional or district hospitals, it is not yet clear how representative the sample is of Australia as a whole, because the proportion of the population that is served by the laboratories that participate in AGAR is not accurately known. Further, it is likely that the proportion of the population served differs in each state and territory.
- Because of the formulation of amoxicillin–clavulanic acid in the Vitek® cards used, interpretation using EUCAST guidelines for this agent was limited to data available from Phoenix<sup>™</sup> cards. Only 9% of the laboratories used cards that contained the EUCAST formulation.
- Concentration ranges of some antimicrobial agents in both the Vitek® and Phoenix<sup>™</sup> cards limit accurate identification of 'susceptible' for some combinations of antimicrobial agents and species.
- Data are classified into HO- and CO infections; healthcare-associated CO infections may be included in the CO group.
- Association of resistance genes with relevant mobile genetic element/s (for example, plasmid/s) is not included in this report.

# 6.Discussion and conclusions

AGAR data show that in 2022 onset of episodes of bacteraemia in Australia continues to be overwhelmingly in the community. For the GnSOP bacteraemia program, the most frequent predisposing clinical manifestations were urinary tract infection for CO episodes and febrile neutropenia and urinary tract infection for HO episodes. Strategies to reduce blood stream infections should take this information on clinical manifestation (sources of bacteraemia) into account.

Previous AGAR reports had shown a longitudinal trend of increasing *E. coli* resistance to key antigram-negative antimicrobial agents, such as ceftriaxone and ciprofloxacin.<sup>32, 33</sup> Resistance to both agents stabilised in 2018 to 2020 (ceftriaxone 13.3%–13.4%, ciprofloxacin 15.2%–16.1%); the level of resistance declined to 12.5% and 12.3% respectively in 2021. In 2022, the level of resistance remained stable (12.7% and 13.7%). The steady rise in resistance to fluoroquinolones is more striking in HO bacteraemia, with a change from 13.7% to 19.8% between 2013 and 2018, to 21.3% in 2019, and to 21.8% in 2020. In 2021 the level of resistance fell to 16.7%, and it increased slightly to 17.8% in 2022. In *K. pneumoniae* complex, rates of resistance to ciprofloxacin were lower than for *E. coli*. Resistance in this species peaked in 2018-2019 at 11.0%-10.2%, falling to 7.2% in 2021, and was 7.8% in 2022.

A little over a decade ago, ciprofloxacin-resistance rates were consistently between 1% and 4%.<sup>32, 33</sup> Despite this concerning increase, the percentage of fluoroquinolone-resistant *E. coli* in Australia remains low in comparison to most European countries and the United Kingdom.<sup>29, 30</sup> Because fluoroquinolone resistance is often linked to cephalosporin resistance caused by ESBLs of the CTX-M type, fluoroquinolone use alone may not be solely responsible for the increase. It is possible that the high use of oral cephalosporins in the community is driving this resistance.

The proportion of *E. coli* with an ESBL phenotype in 2022 was similar to 2021 (2021: 698/4912, 14.2%; 2022: 758/5261, 14.4%). For *K. pneumoniae* complex, the proportion with an ESBL phenotype was also similar to the previous year (2021: 98/1239, 7.9%; 2022: 105/1392, 7.5%). A

substantial majority of (600/758, 79.2%) of ESBL-producing *E. coli* bacteraemias were CO. This indicates that a substantial reservoir of resistance exists in the community, known to be particularly in the elderly population and in long-term residential care settings.<sup>34</sup> In *E. coli* rates of resistance to ceftriaxone in HO bacteraemia rose from 13.0% in 2016 to 20.2% in 2019. Rates fell to 18.8% in 2020, 17.8% in 2021, and to 15.2% in 2022. CO ceftriaxone resistance has remained steady (11.1% in 2016, 11.9% in 2019, 12.4% in 2020, 11.5% in 2021, and 12.1% in 2022).

To date, carbapenemase-producing *Enterobacterales* (CPE) remain relatively uncommon in patients with bacteraemia (0.2% of *E. coli* and 0.6% of *K. pneumoniae* complex isolates). The overall low rates of CPE bacteraemia are encouraging, but some organisms harbour carbapenemase genes more commonly; namely 2.1% of *E. cloacae* complex isolates (3.5% HO; 0.8% CO) in 2022. Examining previous and current AGAR surveys, most CPEs are endemic in origin.<sup>35, 36</sup> Eighteen of the 29 (62.1%) CPEs had *bla*<sub>IMP-4</sub>, with reports predominately from New South Wales (10/18, 55.6%). Nine (31.0%) *bla*<sub>NDM</sub> genes were reported from four states and territories. Eighteen of the participating hospitals had at least one isolate with a carbapenemase gene. This reinforces the importance of infection control programs and adherence to carbapenemase management guidelines to limit transmission of CPE.<sup>37</sup> There were no reports of *bla*<sub>KPC-2</sub>.

No mobile colistin resistance genes other than *mcr-9* or *mcr-10* were detected in any isolates referred for WGS (n = 1,233). *mcr-9* has recently been found among several species of *Enterobacterales*. It is not associated with a colistin resistant phenotype<sup>23</sup>, but is typically found on IncHI2 plasmids that may carry a carbapenemase gene.<sup>24, 25</sup>

Bacteraemia episodes contributed to increased length of hospital stay; the average length of stay in all Australian public hospitals in 2020–2021 was 5.0 days without a hospital-acquired complication (HAC), and 20.6 days with a HAC.<sup>38</sup> In 2022, where data were available for episodes of bacteraemia caused by GnSOP isolates, a little over one-half (5,042/8,894, 56.7%) had a length of stay seven days or more.

In this survey multidrug resistance did not appear to play a contributory role in the rates of allcause mortality for patients with *E. coli*, *K. pneumoniae* complex, *E. cloacae* complex, or *P. aeruginosa* bacteraemia.

It should be noted that outbreaks of multidrug-resistant organisms occur in hospitals and other institutional care settings, and substantial transmission occurs before invasive blood stream infections develop. AGAR data may therefore underestimate local or regional spread of multidrug-resistant organisms and may not assist with early detection of sentinel resistances, such as certain CPEs. AGAR bacteraemia data need to be assessed with other sources of information to provide broader insights into antimicrobial resistance in Australia. The AURA Surveillance System enables these assessments via Australian Passive AMR Surveillance (APAS) and National Alert System for Critical Antimicrobial Resistances (CARAlert) data, which complement AGAR data.

The impact of COVID-19 on antimicrobial resistance remains unclear and may be due to a number of contributing factors. A combination of COVID-19 related travel restrictions on incoming travellers throughout much of 2020 and 2021, and an increasing awareness of and utilization of antimicrobial stewardship as part of the National Safety and Quality Health Service Standards<sup>39</sup> implementation and accreditation Australia-wide, may have reduced some resistance particularly for ESBLs.

Pharmaceutical Benefits Scheme data indicate that the COVID-19 pandemic had a profound impact on antimicrobial use in 2020, with a 40% drop in antimicrobials dispensed between March and April in 2020, with use remaining at this lower level for the rest of the year.<sup>35</sup>

It is also possible that a reduction in elective surgery and, related to this, post-surgical blood stream infections may have occurred during 2020 and 2021.

Future AGAR surveys will help determine if the observed reduction in resistance rates is sustained.

It is clear that ongoing AGAR surveillance remains core to Australia's response to the problem of increasing AMR. AGAR data contribute to understanding AMR in Australian human health settings, and to informing the national response to AMR.

# **Abbreviations**

| Abbreviation | Term                                                       |
|--------------|------------------------------------------------------------|
| AGAR         | Australian Group on Antimicrobial Resistance               |
| APAS         | Australian Passive AMR Surveillance                        |
| ASA          | Australian Society for Antimicrobials                      |
| AURA         | Antimicrobial Use and Resistance in Australia              |
| CI           | confidence interval                                        |
| CLSI         | Clinical and Laboratory Standards Institute                |
| СО           | community onset                                            |
| EARS-Net     | European Antimicrobial Resistance Surveillance Network     |
| ECOFF        | epidemiological cut-off value                              |
| ESBL         | extended-spectrum β-lactamase                              |
| EUCAST       | European Committee on Antimicrobial Susceptibility Testing |
| GnSOP        | Gram-negative Sepsis Outcome Program                       |
| НО           | hospital onset                                             |
| MDR          | Multidrug-resistant                                        |
| MIC          | minimum inhibitory concentration                           |
| PCR          | polymerase chain reaction                                  |
| PMQR         | plasmid mediated quinolone resistance                      |
| QRDR         | quinolone resistant determining region                     |
| RMT          | ribosomal methyltransferase                                |
| WGS          | whole genome sequencing                                    |
| WHO          | World Health Organization                                  |

# Acknowledgements

Participating members of AGAR in 2022:

| Hospitals                                    | AGAR members                                   |
|----------------------------------------------|------------------------------------------------|
| Alfred Hospital, Vic                         | Adam Jenney and Jacqueline Williams            |
| Alice Springs Hospital, NT                   | James McLeod                                   |
| Austin Hospital, Vic                         | Marcel Leroi and Elizabeth Grabsch             |
| Canberra Hospital, ACT                       | Peter Collignon and Susan Bradbury             |
| Children's Hospital Westmead, NSW            | Alison Kesson and Andrew Jarrett               |
| Concord Hospital, NSW                        | Thomas Gottlieb and John Huynh                 |
| Dandenong Hospital, Vic                      | Tony Korman and Kathryn Cisera                 |
| Fiona Stanley Hospital, WA                   | Denise Daley                                   |
| Flinders Medical Centre, SA                  | Kelly Papanaoum and Xiao Chen,                 |
| Gold Coast University Hospital, Qld          | Petra Derrington and Cheryl Curtis             |
| Gosford Hospital, NSW                        | Gabrielle O'Kane and Nola Hitchick             |
| Greenslopes Private Hospital, Qld            | Jennifer Robson and Marianne Allen             |
| John Hunter Hospital, NSW                    | Hemalatha Varadhan and Bree Harris             |
| Joondalup Hospital, WA                       | Shalinie Perera and Ian Meyer                  |
| Launceston General Hospital, Tas             | Pankaja Kalukottege and Brooke Woolle          |
| Liverpool Hospital, NSW                      | Michael Maley and Helen Ziochos                |
| Mater Private Hospital, Townsville, Qld      | Jennifer Robson and Marianne Allen             |
| Monash Children's Hospital, Vic              | Tony Korman and Despina Kotsanas               |
| Monash Medical Centre, Vic                   | Tony Korman and Despina Kotsanas               |
| Nepean Hospital, NSW                         | James Branley and Linda Douglass               |
| North-west regional WA                       | Michael Leung and Jacinta Bowman               |
| Pathology Queensland Central Laboratory, Qld | Claire Heney and Narelle George                |
| Perth Children's Hospital, WA                | Chris Blyth and Jacinta Bowman                 |
| Prince Charles Hospital, Qld                 | Robert Horvath and Laura Martin                |
| Prince of Wales Hospital, NSW                | Monica Lahra and Peter Huntington              |
| Princess Alexandra Hospital, Qld             | Naomi Runnegar and Joel Douglas                |
| Queensland Children's Hospital, Qld          | Clare Nourse and Narelle George                |
| Royal Adelaide Hospital, SA                  | Morgyn Warner and Kija Smith                   |
| Royal Darwin Hospital, NT                    | Rob Baird and Jann Hennessy                    |
| Royal Hobart Hospital, Tas                   | Louise Cooley and David Jones                  |
| Royal Melbourne Hospital, Vic                | Katherine Bond and Rose Cotronei               |
| Royal North Shore Hospital, NSW              | Angela Wong                                    |
| Royal Perth Hospital, WA                     | Owen Robinson and Geoffrey Coombs              |
| Royal Prince Alfred Hospital, NSW            | Sebastiaan van Hal and Thomas Le               |
| Royal Women's Hospital, Vic                  | Andrew Daley and Gena Gonis                    |
| Sir Charles Gairdner Hospital, WA            | Ronan Murray and Jacinta Bowman                |
| St John of God Hospital, Murdoch, WA         | Sudha Pottumarthy-Boddu and Alicia<br>Robinson |
| St Vincent's Hospital, Melbourne, Vic        | Amy Crowe and Lisa Brenton                     |
| St Vincent's Hospital, Sydney, NSW           | David Lorenz                                   |
| Sydney Children's Hospital, NSW              | Monica Lahra and Peter Huntington              |
| Westmead Hospital, NSW                       | Jon Iredell and Elena Martinez                 |
| Wollongong Hospital, NSW                     | Peter Newton and Melissa Hoddle                |
| Women's and Children's Hospital, SA          | Morgyn Warner and Kija Smith                   |

### **Reference laboratories**

AGAR gratefully acknowledges the Antimicrobial Resistance Laboratory, Microbial Genomics Reference Laboratory, CIDMLS, ICPMR, Westmead Hospital [Jenny Draper, Elena Martinez and Andrew Ginn] for performing WGS on the referred isolates.

### Funding

The AGAR Surveillance Outcome Programs are funded by the Australian Government Department of Health and Aged Care.

# References

- 1. CLSI. Performance standards for antimicrobial susceptibility testing. 33rd ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2023.
- 2. European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 13.1, valid from 2022-06-29. 2023.
- 3. Seemann T, Goncalves da Silva A, Bulach DM, Schultz MB, Kwong JC, Howden BP. *Nullarbor* Github. [Internet] 2020 Available from: <u>https://github.com/tseemann/nullarbor</u>.
- 4. Australian Commission on Safety and Quality in Health Care. Priority Antibacterial List for antimicrobial resistance containment: a stewardship resource for human health. [Internet] Sydney: ACSQHC; 2020 [cited 2022 May 5] Available from: <u>https://www.safetyandquality.gov.au/publications-and-resources/resource-library/priority-antibacterial-list-antimicrobial-resistance-containment.</u>
- 5. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-281.
- 6. Chen LF, Freeman JT, Nicholson B, Keiger A, Lancaster S, Joyce M, et al. Widespread dissemination of CTX-M-15 genotype extended-spectrum-β-lactamase-producing enterobacteriaceae among patients presenting to community hospitals in the southeastern United States. Antimicrob Agents Chemother. 2014;58(2):1200-1202.
- 7. Woodford N, Ward ME, Kaufmann ME, Turton J, Fagan EJ, James D, et al. Community and hospital spread of *Escherichia coli* producing CTX-M extended-spectrum β-lactamases in the UK. J Antimicrob Chemother. 2004;54(4):735-743.
- 8. Xia S, Fan X, Huang Z, Xia L, Xiao M, Chen R, et al. Dominance of CTX-M-type extendedspectrum β-lactamase (ESBL)-producing *Escherichia coli* isolated from patients with community-onset and hospital-onset infection in China. PLoS One. 2014;9(7):e100707.
- 9. Stuart RL, Kotsanas D, Webb B, Vandergraaf S, Gillespie EE, Hogg GG, et al. Prevalence of antimicrobial-resistant organisms in residential aged care facilities. Med J Aust. 2011;195(9):530-533.
- Bell JM, Turnidge JD, Jones RN, SENTRY Asia-Pacific Participants. Prevalence of extended-spectrum β-lactamase-producing *Enterobacter cloacae* in the Asia-Pacific region: results from the SENTRY Antimicrobial Surveillance Program, 1998 to 2001. Antimicrob Agents Chemother. 2003;47(12):3989-3993.
- 11. Livermore DM. β-lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995;8(4):557-584.
- 12. Potz NA, Colman M, Warner M, Reynolds R, Livermore DM. False-positive extendedspectrum β-lactamase tests for *Klebsiella oxytoca* strains hyperproducing K1 β-lactamase. J Antimicrob Chemother. 2004;53(3):545-547.
- 13. Johnson JR, Porter S, Thuras P, Castanheira M. The pandemic H30 subclone of sequence type 131 (ST131) as the leading cause of multidrug-resistant *Escherichia coli* infections in the United States (2011-2012). Open Forum Infect Dis. 2017;4(2):ofx089.
- 14. Merino I, Hernandez-Garcia M, Turrientes MC, Perez-Viso B, Lopez-Fresnena N, Diaz-Agero C, et al. Emergence of ESBL-producing *Escherichia coli* ST131-C1-M27 clade colonizing patients in Europe. J Antimicrob Chemother. 2018;73(11):2973-2980.
- 15. Pitout JD, DeVinney R. *Escherichia coli* ST131: a multidrug-resistant clone primed for global domination. F1000Res. 2017;6:195.
- 16. Flament-Simon SC, Garcia V, Duprilot M, Mayer N, Alonso MP, Garcia-Menino I, et al. High prevalence of ST131 subclades C2-H30Rx and C1-M27 among extended-spectrum βlactamase-producing *Escherichia coli* causing human extraintestinal infections in patients from two hospitals of Spain and France during 2015. Front Cell Infect Microbiol. 2020;10:125.
- 17. Johnson JR, Johnston BD, Porter SB, Clabots C, Bender TL, Thuras P, et al. Rapid emergence, subsidence, and molecular detection of *Escherichia coli* sequence type 1193*fimH64*, a new disseminated multidrug-resistant commensal and extraintestinal pathogen. J Clin Microbiol. 2019;57(5):e01664-01618.

- 18. Albornoz E, Tijet N, De Belder D, Gomez S, Martino F, Corso A, et al. *qnrE1*, a member of a new family of plasmid-located quinolone resistance genes, originated from the chromosome of *Enterobacter* species. Antimicrob Agents Chemother. 2017;61(5):e02555-02516.
- 19. Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci. 2015;1354:12-31.
- 20. Cuypers WL, Jacobs J, Wong V, Klemm EJ, Deborggraeve S, Van Puyvelde S. Fluoroquinolone resistance in *Salmonella*: insights by whole-genome sequencing. Microb Genom. 2018;4(7):e000195.
- 21. Zankari E, Allesoe R, Joensen KG, Cavaco LM, Lund O, Aarestrup FM. PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother. 2017;72(10):2764-2768.
- 22. Paltansing S, Kraakman ME, Ras JM, Wessels E, Bernards AT. Characterization of fluoroquinolone and cephalosporin resistance mechanisms in Enterobacteriaceae isolated in a Dutch teaching hospital reveals the presence of an *Escherichia coli* ST131 clone with a specific mutation in parE. J Antimicrob Chemother. 2013;68(1):40-45.
- 23. Tyson GH, Li C, Hsu CH, Ayers S, Borenstein S, Mukherjee S, et al. The *mcr-9* gene of *Salmonella* and *Escherichia coli* Is not associated with colistin resistance in the United States. Antimicrob Agents Chemother. 2020;64(8).
- 24. Kieffer N, Royer G, Decousser JW, Bourrel AS, Palmieri M, Ortiz De La Rosa JM, et al. *mcr-9*, an inducible gene encoding an acquired phosphoethanolamine transferase in *Escherichia coli*, and its origin. Antimicrob Agents Chemother. 2019;63(9):e00965-00919.
- 25. Li Y, Dai X, Zeng J, Gao Y, Zhang Z, Zhang L. Characterization of the global distribution and diversified plasmid reservoirs of the colistin resistance gene *mcr-9*. Sci Rep. 2020;10(1):8113.
- 26. Doi Y, Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis. 2007;45(1):88-94.
- 27. Doi Y, Wachino JI, Arakawa Y. Aminoglycoside resistance: the emergence of acquired 16S ribosomal RNA methyltransferases. Infect Dis Clin North Am. 2016;30(2):523-537.
- 28. European Centre for Disease Prevention and Control. European Antimicrobial Resistance Surveillance Network (EARS-Net). [Internet] Stockholm: ECDC; 2023 Available from: <u>https://www.ecdc.europa.eu/en/about-us/networks/disease-networks-and-laboratory-networks/ears-net-data</u>.
- 29. European Centre for Disease Prevention and Control and World Health Organisation. Antimicrobial resistance surveillance in Europe 2023 - 2021 data. [Internet] Stockholm: ECDC; 2023 [updated 20 April 2023] Available from: <u>https://www.ecdc.europa.eu/sites/default/files/documents/Antimicrobial%20resistance%20s</u> <u>urveillance%20in%20Europe%202023%20-%202021%20data.pdf</u>.
- 30. European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net) Annual epidemiological report for 2021. [Internet] Stockholm: ECDC; 2022 [updated 17 Nov 2022] Available from: <u>https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2021</u>.
- 31. Surveillance Atlas of Infectious Diseases [database on the Internet]. European Centre for Disease Prevention and Control. 2023 [cited 28 Apr 2023]. Available from: <u>https://www.ecdc.europa.eu/en/surveillance-atlas-infectious-diseases</u>.
- 32. Nimmo GR, Bell JM, Collignon PJ, Australian Group for Antimicrobial R. Fifteen years of surveillance by the Australian Group for Antimicrobial Resistance (AGAR). Commun Dis Intell Q Rep. 2003;27 Suppl:S47-54.
- 33. Pearson J, Turnidge J, Franklin C, Bell J, Australian Group on Antimicrobial Resistance. Prevalence of antimicrobial resistances in common pathogenic Enterobacteriaceae in Australia, 2004: report from the Australian Group on Antimicrobial Resistance. Commun Dis Intell Q Rep. 2007;31(1):106-112.
- Australian Commission on Safety and Quality in Health Care. Australian Passive Antimicrobial Resistance Surveillance. First report: multi-resistant organisms. Sydney: 2018.

- 35. Australian Commission on Safety and Quality in Health Care. AURA 2021: fourth Australian report on antimicrobial use and resistance in human health. Sydney: ACSQHC, 2021.
- 36. Australian Group for Antimicrobial Resistance. The evolution of carbapenemases in major gram-negative bacteria in Australia. 2016.
- 37. Australian Commission on Safety and Quality in Health Care. Recommendations for the control of carbapenemase-producing *Enterobacterales* (CPE). A guide for acute care health service organisations. Sydney: ACSQHC, 2021.
- 38. Australian Institute of Health and Welfare. Australia's hospitals at a glance. [Internet] Canberra: AIHW; 2022 [updated 7/06/2022 v14.0; cited 14 July 2023] Available from: <u>https://www.aihw.gov.au/reports/hospitals/australias-hospitals-at-a-glance/contents/about</u>.
- 39. Australian Commission on Safety and Quality in Health Care. National Safety and Quality Health Service Standards. 2nd ed. version 2. Sydney: ACSQHC, 2021.
- 40. Australian Institute of Health and Welfare. Australia's hospital peer groups. [Internet] Canberra: AIHW; 2015 [updated 7/08/2017 v1.0; cited 14 July 2023] Available from: <u>https://www.aihw.gov.au/reports/hospitals/australian-hospital-peer-groups/data</u>.
- 41. Seemann T. *Abricate*, Github. [Internet] 2020 Available from: <u>https://github.com/tseemann/abricate</u>.
- 42. National Center for Biotechnology Information. AMRFinder. [Internet]: NCBI; 2020 Available from: <u>https://ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder/</u>
- 43. Hunt M, Mather AE, Sanchez-Buso L, Page AJ, Parkhill J, Keane JA, et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom. 2017;3(10):e000131.
- 44. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48(D1):D517-D525.
- 45. Roer L, Tchesnokova V, Allesoe R, Muradova M, Chattopadhyay S, Ahrenfeldt J, et al. Development of a web tool for *Escherichia coli* subtyping based on *fimH* alleles. J Clin Microbiol. 2017;55(8):2538-2543.
- 46. Price LB, Johnson JR, Aziz M, Clabots C, Johnston B, Tchesnokova V, et al. The epidemic of extended-spectrum-β-lactamase-producing *Escherichia coli* ST131 is driven by a single highly pathogenic subclone, H30-Rx. mBio. 2013;4(6):e00377-00313.

# Appendix A. Study design

Fifty-five hospitals participated in the 2022 survey, 48 adult and seven children's hospitals. All states and territories were represented. The hospital peer group/type<sup>40</sup> represented were:

Principal referral hospitals (n = 27)Public acute group A hospitals (n = 5)Children's hospitals (n = 6)Private acute group A hospitals (n = 2)Private acute group B hospitals (n = 1)Combined Women's and children's hospitals (n = 1)Regional and district hospitals from north-west regional Western Australia (n = 13)

- Public acute group C hospitals (n = 5)
- Public acute group D hospitals (*n* = 6)
- Very small hospitals (*n* = 2)

The 33 laboratories that serviced the hospitals participating in AGAR collected either all isolates from different patient episodes of bacteraemia or up to 200 isolates for the Gram-negative Surveillance Outcome Program. In patients with more than one isolate, a new episode was defined as a new positive blood culture more than two weeks after the initial positive culture.

An episode was defined as CO if the first positive blood culture was collected 48 h or less after admission, and as HO if collected greater than 48 h after admission.

All laboratories that participated in AGAR obtained basic laboratory information for each patient episode plus varying demographic information, depending on the level at which they are enrolled in the program, Bronze or Silver (Tables A1–A3). Bronze level laboratories provided date of collection, date of birth, sex, postcode and admission date. Silver level laboratories provided discharge date, device-related infection, principal clinical manifestation, outcome at seven and 30 days from blood culture date of collection, and date of death if appropriate.

In 2022, one hospital from Queensland was only able to participate for Quarter one, and three additional hospitals from New South Wales (n = 2) and Queensland (n = 1) contributed data.

|                              | _                      | Level of p | articipation    |
|------------------------------|------------------------|------------|-----------------|
| State or territory           | Number of institutions | Bronze     | Silver          |
| New South Wales              | 13                     | 2          | 11              |
| Victoria                     | 8                      | 0          | 8               |
| Queensland                   | 7†                     | 0          | 7†              |
| South Australia              | 3                      | 0          | 3               |
| Western Australia            | 19 <sup>§</sup>        | 2          | 17 <sup>§</sup> |
| Tasmania                     | 2                      | 0          | 2               |
| Northern Territory           | 2                      | 1          | 1               |
| Australian Capital Territory | 1                      | 0          | 1               |
| Total                        | 55                     | 5          | 50              |

**Table A1:** Level of participation of laboratories that contributed data on gram-negative\* bacteraemia, by state and territory, 2022

\* Enterobacterales, Acinetobacter species and Pseudomonas aeruginosa

<sup>+</sup> One institution participated for Quarter 1 only

§ Includes 13 regional and district hospitals from north-west Western Australia

# **Appendix B. Methods**

## **Species identification**

Isolates were identified using the routine methods for each institution, either Vitek® or Phoenix<sup>™</sup> automated Microbiology systems, and, if available, mass spectrometry (MALDI - TOF).

### **Susceptibility testing**

Testing was performed using two commercial semi-automated methods: Vitek® 2 (bioMérieux) (n = 30) and Phoenix (BD) (n = 3), which are calibrated to the ISO (International Organization for Standardization) reference standard method of broth microdilution. Commercially available Vitek® 2 (AST-N246, AST-N435 or AST-N410) or Phoenix (NMIC-422) cards were used by all participants throughout the survey period.

The CLSI M100<sup>1</sup> and the EUCAST v13.0<sup>2</sup> breakpoints from January 2023 were used in the analysis.

### **Clinical and outcome data**

#### Device related infection

Device-related bacteraemia is defined as a bacteraemia derived from central (which includes portacaths, PICC lines) or peripheral (venous and arterial) intravascular devices, from catheterassociated urinary tract infection (including nephrostomy tubes and stents), or ventilator-associated respiratory tract infection or bacteraemias associated with biliary stents.

#### Principal clinical manifestation

For GnSOP surveys, the principal clinical manifestation for each patient episode is categorised as:

- Biliary tract infection (including cholangitis)
- Device-related infection with metastatic focus
- Device-related infection without metastatic focus
- Febrile neutropenia
- Intra-abdominal infection other than biliary tract
- No identifiable focus
- Osteomyelitis/septic arthritis
- Other clinical syndrome
- Skin and skin structure infection
- Urinary tract infection

#### Length of hospital stay following bacteraemia

Length of hospital stay following bacteraemia was calculated from the date of blood culture collection to patient discharge or death.

#### All-cause mortality

All-cause mortality refers to outcome (died, survived, unknown) at 7- and 30-days from blood culture date of collection.

# **Antimicrobials tested**

The antimicrobials tested are shown in Table B1.

**Table B1:** Antimicrobials available on susceptibility testing cards and interpretive guidelines for CLSI and EUCAST

| Antimicrobial agent                        | Breakpoint (mg/L) |     |                |        |                           |          |       |
|--------------------------------------------|-------------------|-----|----------------|--------|---------------------------|----------|-------|
|                                            | CLSI M100*        |     |                |        | EUCAST v13.0 <sup>†</sup> |          |       |
|                                            | S                 | SDD | I              | R      | S, SD                     | S, IE    | R     |
| Amikacin                                   |                   |     |                |        |                           |          |       |
| Acinetobacter spp.                         | ≤16               |     | 32             | ≥64    | ≤8                        | _§       | >8    |
| Enterobacterales                           | ≤16               |     | 32             | ≥64    | ≤8                        | _§       | >8    |
| Pseudomonas spp.                           | ≤16               |     | 32             | ≥64    | ≤16                       | _§       | >16   |
| Amoxicillin–clavulanic acid (2:1<br>ratio) |                   |     |                |        |                           |          |       |
| Enterobacterales                           | ≤8/4              |     | 16/8           | ≥32/16 | _#                        | _#       | _#    |
| Amoxicillin–clavulanic acid<br>(fixed)**   |                   |     |                |        |                           |          |       |
| Enterobacterales                           | _#                |     | _#             | _#     | ≤8                        | _§       | >8    |
| Ampicillin                                 |                   |     |                |        |                           |          |       |
| Enterobacterales                           | ≤8                |     | 16             | ≥32    | ≤8                        | _§       | >8    |
| Aztreonam (Phoenix card)                   |                   |     |                |        |                           |          |       |
| Enterobacterales                           | ≤4                |     | 8              | ≥16    | ≤1                        | 2–4      | >4    |
| Pseudomonas spp.                           | ≤8                |     | 16             | ≥32    | ≤0.001                    | 0.002–16 | >16   |
| Cefazolin                                  |                   |     |                |        |                           |          |       |
| Enterobacterales                           | ≤2 <sup>‡</sup>   |     | 4 <sup>‡</sup> | ≥8     | ≤0.001                    | 0.002–4  | >4    |
| Cefepime                                   |                   |     |                |        |                           |          |       |
| Acinetobacter spp.                         | ≤8                |     | 16             | ≥32    | _#                        | _#       | _#    |
| Enterobacterales                           | ≤2                | 4–8 | _§             | ≥16    | ≤1                        | 2–4      | >4    |
| Pseudomonas spp.                           | ≤8                |     | 16             | ≥32    | ≤0.001                    | 0.002–8  | >8    |
| Cefalexin                                  | _#                |     | _#             | _#     | ≤16                       | _§       | >16   |
| Cefuroxime (Phoenix card)                  |                   |     |                |        |                           |          |       |
| Enterobacterales (parental)                | ≤8                |     | 16             | ≥32    | ≤0.001                    | 0.002–8  | >8    |
| Enterobacterales (oral)                    | ≤4                |     | 8–16           | ≥32    | ≤8                        | _§       | >8    |
| Cefoxitin                                  |                   |     |                |        |                           |          |       |
| Enterobacterales                           | ≤8                |     | 16             | ≥32    | _#                        | _#       | _#    |
| Ceftazidime                                |                   |     |                |        |                           |          |       |
| Acinetobacter spp.                         | ≤8                |     | 16             | ≥32    | _#                        | _#       | _#    |
| Enterobacterales                           | ≤4                |     | 8              | ≥16    | ≤1                        | 2–4      | >4    |
| Pseudomonas spp.                           | ≤8                |     | 16             | ≥32    | ≤0.001                    | 0.002–8  | >8    |
| Ceftolozane-tazobactam                     | -                 |     | -              |        |                           |          |       |
| Enterobacterales                           | ≤2/4              |     | 4/4            | ≥8/4   | ≤2                        | _§       | >2    |
| Pseudomonas spp.                           | ≤4/4              |     | 8/4            | ≥16/4  | _ <b>_</b><br>≤4          | _§       | >4    |
| Ceftriaxone                                |                   |     |                |        |                           |          |       |
| Acinetobacter spp.                         | ≤8                |     | 16–32          | ≥64    | _#                        | _#       | _#    |
| Enterobacterales                           | _c<br>≤1          |     | 2              | _3 :   | ≤1                        | 2        | >2    |
| Ciprofloxacin                              |                   |     | _              |        |                           | _        |       |
| Acinetobacter spp.                         | ≤1                |     | 2              | ≥4     | ≤0.001                    | 0.002–1  | >1    |
| Enterobacterales                           | ≤0.25             |     | 0.5            | ≥1     | ≤0.25                     | 0.5      | >0.5  |
| Salmonella spp. <sup>§§</sup>              | ≤0.06             |     | 0.12-0.5       | ≥1     | <u>≤0.25</u>              | §        | >0.06 |

|                               |       |     | ı/L)      |        |        |             |       |
|-------------------------------|-------|-----|-----------|--------|--------|-------------|-------|
| Antimicrobial agent           |       | CLS | I M100*   |        | E      | UCAST v13.0 | ıt .  |
|                               | S     | SDD | I         | R      | S, SD  | S, IE       | R     |
| Pseudomonas spp.              | ≤0.5  |     | 1         | ≥2     | ≤0.001 | 0.002–0.5   | >0.5  |
| Colistin (Phoenix card)       |       |     |           |        |        |             |       |
| Acinetobacter spp.            | _#    |     | ≤2        | ≥4     | ≤2     | _§          | >2    |
| Enterobacterales              | _#    |     | ≤2        | ≥4     | ≤2     | _§          | >2    |
| Pseudomonas spp.              | _#    |     | ≤2        | ≥4     | ≤2     | _§          | >2    |
| Ertapenem (Phoenix card)      | ≤0.5  |     | 1         | ≥2     | ≤0.5   | _§          | >0.5  |
| Fosfomycin (Phoenix card)     |       |     |           |        |        |             |       |
| Enterobacterales              | ≤64   |     | 128       | ≥256   | ≤32    | _§          | >32   |
| Gentamicin                    |       |     |           |        |        |             |       |
| Acinetobacter spp.            | ≤4    |     | 8         | ≥16    | ≤4     | _§          | >4    |
| Enterobacterales              | ≤4    |     | 8         | ≥16    | ≤2     | _§          | >2    |
| Pseudomonas spp.              | ≤4    |     | 8         | ≥16    | _#     | _#          | _#    |
| Imipenem (Phoenix card)       |       |     |           |        |        |             |       |
| Acinetobacter spp.            | ≤2    |     | 4         | ≥8     | ≤2     | 4           | >4    |
| Enterobacterales              | ≤1    |     | 2         | ≥4     | ≤2     | 4           | >4    |
| Pseudomonas spp.              | ≤2    |     | 4         | ≥8     | ≤0.001 | 0.002–4     | >4    |
| Meropenem                     |       |     |           |        |        |             |       |
| Acinetobacter spp.            | ≤2    |     | 4         | ≥8     | ≤2     | 4–8         | >8    |
| Enterobacterales              | ≤1    |     | 2         | ≥4     | ≤2     | 4–8         | >8    |
| Pseudomonas spp.              | ≤2    |     | 4         | ≥8     | ≤2     | 4–8         | >8    |
| Nitrofurantoin                |       |     |           |        |        |             |       |
| Enterobacterales              | ≤32   |     | 64        | ≥128   | ≤64##  | _§          | >64#  |
| Norfloxacin                   |       |     |           |        |        |             |       |
| Enterobacterales              | ≤4    |     | 8         | ≥16    | ≤0.5   | _§          | >0.5  |
| Pseudomonas spp.              | ≤4    |     | 8         | ≥16    | _#     | _#          | _#    |
| Piperacillin-tazobactam       |       |     |           |        |        |             |       |
| Acinetobacter spp.            | ≤16/4 |     | 32/4-64/4 | ≥128/4 | _#     | _#          | _#    |
| Enterobacterales              | ≤16/4 |     | 32/4-64/4 | ≥128/4 | ≤8     | _§          | >8    |
| Pseudomonas spp.              | ≤16/4 |     | 32/4-64/4 | ≥128/4 | ≤0.001 | 0.002–16    | >16   |
| Tetracycline                  |       |     |           |        |        |             |       |
| Acinetobacter spp.            | ≤4    |     | 8         | ≥16    | _#     | _#          | _#    |
| Enterobacterales              | ≤4    |     | 8         | ≥16    | _#     | _#          | _#    |
| Ticarcillin-clavulanate       |       |     |           |        |        |             |       |
| Acinetobacter spp.            | ≤16/2 |     | 32/2-64/2 | ≥128/2 | _#     | _#          | _#    |
| Enterobacterales              | ≤16/2 |     | 32/2-64/2 | ≥128/2 | ≤8     | 16          | >16   |
| Pseudomonas spp.              | ≤16/2 |     | 32/2-64/2 | ≥128/2 | ≤0.001 | 0.002–16    | >16   |
| Tigecycline (Phoenix card)    | _#    |     | _#        | _#     | ≤0.5   | _§          | >0.5  |
| Tobramycin                    |       |     |           |        |        |             |       |
| Acinetobacter spp.            | ≤4    |     | 8         | ≥16    | ≤4     | _§          | >4    |
| Enterobacterales              | ≤4    |     | 8         | ≥16    | ≤2     | _§          | >2    |
| Pseudomonas spp.              | ≤4    |     | 8         | ≥16    | ≤2     | _§          | >2    |
| Trimethoprim                  |       |     |           |        |        |             |       |
| Enterobacterales              | ≤8    |     | _§        | ≥16    | ≤4     | _§          | >4    |
| Trimethoprim-sulfamethoxazole |       |     |           |        |        |             |       |
| Acinetobacter spp.            | ≤2/38 |     | _§        | ≥4/76  | ≤2/38  | 4/76        | >4/76 |
| Enterobacterales              | ≤2/38 |     | _§        | ≥4/76  | ≤2/38  | 4/76        | >4/76 |

CLSI = Clinical and Laboratory Standards Institute; EUCAST = European Committee on Antimicrobial Susceptibility Testing; I = intermediate (CLSI); R = resistant; S = susceptible (CLSI); S, IE = susceptible, increased exposure (EUCAST); S, SD = sensitive, standard dosing (EUCAST); SDD = sensitive dose dependent (CLSI)

- \* The breakpoints selected to identify resistance are described in the *Performance Standards for Antimicrobial* Susceptibility Testing. 33<sup>rd</sup> ed. CLSI supplement M100, 2023
- <sup>†</sup> EUCAST breakpoint tables for interpretation of MICs and zone diameters, version 13.1, 2023 (<u>www.eucast.org</u>)
- § No category defined
- # No guidelines for indicated species
- \*\* For susceptibility testing purposes, EUCAST fixes the concentration of clavulanate at 2 mg/L, rather than the 2:1 ratio used in the CLSI guidelines. The EUCAST breakpoint is based in intravenous administration
- t The cefazolin concentration range available on the current Vitek® card restricts the ability to identify the susceptible and intermediate categories (CLSI)
- Since the set of t
- ## Breakpoints apply to *E. coli* only

## Whole genome sequencing

*E. coli, Klebsiella* spp., and *Proteus* spp. and *Salmonella* spp. with ceftazidime or ceftriaxone MIC >1 mg/L, or cefoxitin MIC >8 mg/L; any other *Enterobacterales* with cefepime MIC >1 mg/L; all *Enterobacterales* with meropenem MIC >0.125 mg/L (>0.25 if tested using Vitek); all *Acinetobacter* isolates and *P. aeruginosa* with meropenem MIC ≥ 8 mg/L; all isolates with amikacin MIC >32 mg/L, and all isolates with colistin MIC > 4 mg/L were referred to a central laboratory (Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research) for WGS.

WGS was performed by the Antimicrobial Resistance Laboratory, Microbial Genomics Reference Laboratory, CIDMLS, ICPMR, Westmead Hospital using the Illumina NextSeq<sup>™</sup> 500 platform. Data were analysed using a modification of the Nullarbor bioinformatic pipeline<sup>3</sup>, incorporating searching contigs against the NCBI AMRFinder database

(<u>https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047</u>) using ABRicate<sup>41</sup> and AMRFinder<sup>42</sup>, followed by a custom AMR-specific pipeline which includes a read-based search using ARIBA<sup>43</sup> against the CARD<sup>44</sup> and NCBI databases. Ambiguities and potential multiple gene copies/variants were checked manually by mapping reads to reference genes from

https://www.ncbi.nlm.nih.gov/pathogens/isolates#/refgene/ using Geneious Prime 2022.1.1 (https://www.geneious.com).. Reported chromosomal mutations were derived from ARIBA result tables (quinolone mutations) or its mapping-based reassemblies (all other mutations). Additional mutations in *gyr* and *par* genes identified by PointFinder<sup>21</sup> and potentially contributing to resistance were also examined manually. *fimH* type was predicted by FimTyper.<sup>45</sup> Detection of *H30-Rx* specific SNPs were carried out by *in silico* PCR.<sup>46</sup>

## **Quality control**

Quality control strains used were those recommended by CLSI and EUCAST standards.

## **Data validation**

Various checks were made to ensure that the data were valid. These included:

- Null values in the mandatory fields
- Missing MIC data
- Patient age if ≥100 years or <0 days
- Confirm dates when:
  - Specimen collected after patient discharged or died
  - Patient discharged or died before admitted
  - Patient admitted before born
  - Patient admitted more than two days after specimen collected
  - Patient admitted more than six months before specimen collected

# Appendix C. Susceptibility to antimicrobial agents

Overall percentages of resistance or non-susceptibility for the indicator species of national priority<sup>4</sup> are shown in Table C1. For some antimicrobials, the concentration range tested did not distinguish between intermediate susceptibility (I) and resistant (R), and the term non-susceptible (NS) was used to describe these isolates.

**Table C1:** Activity of antimicrobial agents tested against isolates recovered from patients with Gram-negative blood stream infections, by state and territory, AGAR, 2022

| Antimicrobial agent                                  | Colorent  | CL          | SI and E    | UCAST       | percenta    | ge susc     | eptibili    | ty at ind   | icated c    | ategory             |
|------------------------------------------------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------------|
| and species                                          | Category* | NSW         | Vic         | Qld         | SA          | WA          | Tas         | NT          | ACT         | Australia           |
| Amikacin                                             |           |             |             |             |             |             |             |             |             |                     |
| Acinetobacter                                        | n         | 6           | 6           | 21          | 3           | 4           | 3           | 8           | 1           | 52                  |
| baumannii complex                                    | %R        | n/a         | n/a         | 0.0,<br>4.8 | n/a         | n/a         | n/a         | n/a         | n/a         | 1.9, 3.8            |
| Enterobacter cloacae                                 | n         | 169         | 98          | 88          | 22          | 51          | 19          | 9           | 18          | 474                 |
| complex                                              | %R        | 0.0,<br>0.0 | 0.0,<br>1.0 | 0.0,<br>1.1 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>5.3 | n/a         | 0.0,<br>0.0 | 0.0, 0.6            |
|                                                      | n         | 1,770       | 1,054       | 711         | 439         | 695         | 231         | 170         | 190         | 5,260               |
| Escherichia coli                                     | %R        | 0.0,<br>1.0 | 0.1,<br>0.5 | 0.0,<br>0.7 | 0.0,<br>0.9 | 0.1,<br>1.2 | 0.0,<br>0.9 | 0.0,<br>3.5 | 0.0,<br>0.5 | 0.0, 0.9            |
|                                                      | n         | 39          | 29          | 15          | 13          | 18          | 7           | 3           | 5           | 129                 |
| Klebsiella aerogenes                                 | %R        | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | n/a         | n/a         | n/a         | 0.0, 0.0            |
|                                                      | n         | 87          | 78          | 29          | 28          | 43          | 16          | 5           | 10          | 296                 |
| Klebsiella oxytoca                                   | %R        | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | n/a         | 0.0,<br>0.0 | 0.0, 0.0            |
| Klebsiella                                           | n         | 444         | 282         | 227         | 83          | 212         | 50          | 52          | 42          | 1,392               |
| pneumoniae complex                                   | %R        | 0.0,<br>0.2 | 0.4,<br>0.7 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.1, 0.2            |
|                                                      | n         | 113         | 69          | 43          | 31          | 48          | 9           | 4           | 6           | 323                 |
| Proteus mirabilis                                    | %R        | 0.9,<br>2.7 | 0.0,<br>1.4 | 0.0,<br>2.3 | 0.0,<br>0.0 | 0.0,<br>0.0 | n/a         | n/a         | n/a         | 0.3, 1.5            |
| Pseudomonas                                          | n         | 271         | 145         | 153         | 76          | 113         | 35          | 13          | 30          | 836                 |
| aeruginosa                                           | %R        | 0.7,<br>0.7 | 0.0,<br>0.7 | 0.0,<br>0.7 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.2, 0.5            |
| Salmonella species                                   | n         | 17          | 18          | 16          | 0           | 18          | 12          | 8           | 3           | 92                  |
| (non-typhoidal)                                      | %R        | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | n/a         | 0.0,<br>0.0 | 0.0,<br>0.0 | n/a         | n/a         | 0.0, 0.0            |
| Salmonella species                                   | n         | 9           | 15          | 2           | 1           | 5           | 1           | 1           | 3           | 37                  |
| (typhoidal)                                          | %R        | n/a         | 0.0,<br>0.0 | n/a         | n/a         | n/a         | n/a         | n/a         | n/a         | 0.0, 0.0            |
|                                                      | n         | 105         | 52          | 36          | 7           | 35          | 8           | 4           | 10          | 257                 |
| Serratia marcescens                                  | %R        | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | n/a         | 0.0,<br>0.0 | n/a         | n/a         | 0.0,<br>0.0 | 0.0, 0.0            |
| Amoxicillin–clavulanic acid (2:1 ratio) <sup>†</sup> |           |             |             |             |             |             |             |             |             |                     |
|                                                      | n         | 1,401       | 1,054       | 652         | 174         | 695         | 231         | 170         | 190         | 4,567               |
| Escherichia coli                                     | %I        | 11.1,<br>_§ | 8.5, –<br>§ | 8.7, –<br>§ | 10.9,<br>_§ | 10.9,<br>_§ | 6.9,<br>_§  | 11.8,<br>_§ | 10.0,<br>_§ | 9.9, — <sup>§</sup> |
|                                                      | %R        | 8.6, –<br>§ | 6.5, –<br>§ | 7.4, –<br>§ | 11.5,<br>_§ | 6.8,<br>_§  | 5.6,<br>_§  | 5.3, –<br>§ | 5.8, –<br>§ | 7.4, – <sup>§</sup> |
| Klebsiella oxytoca                                   | n         | 66          | 78          | 27          | 13          | 43          | 16          | 5           | 10          | 258                 |

Surveillance Outcome Programs 2022 report

| Antimicrobial agent                          | Category* | CLS           | SI and E      | UCAST         | percenta      | ge suso                | eptibili               | ty at ind     | icated ca     | ategory             |
|----------------------------------------------|-----------|---------------|---------------|---------------|---------------|------------------------|------------------------|---------------|---------------|---------------------|
| and species                                  | Calegory  | NSW           | Vic           | Qld           | SA            | WA                     | Tas                    | NT            | ACT           | Australia           |
|                                              | %I        | 3.0, –<br>§   | 5.1, –<br>§   | 7.4, –<br>§   | 0.0, –<br>§   | 0.0,<br>_§             | 6.3,<br>_§             | n/a           | 10.0,<br>_§   | 4.3, – <sup>§</sup> |
|                                              | %R        | 9.1, –<br>§   | 6.4, –<br>§   | 0.0, –<br>§   | 7.7, –<br>§   | 7.0,<br>_§             | 18.8,<br>_§            | n/a           | 0.0, –<br>§   | 7.4, – <sup>§</sup> |
|                                              | n         | 348           | 282           | 210           | 34            | 212                    | 50                     | 52            | 42            | 1,230               |
| Klebsiella<br>pneumoniae complex             | %I        | 5.5, –<br>§   | 3.9, –<br>§   | 3.3, –<br>§   | 2.9, –<br>§   | 4.7,<br>_§             | 2.0,<br>_§             | 11.5,<br>_§   | 4.8, –<br>§   | 4.6, –§             |
| pricamoniae complex                          | %R        | 4.9, –<br>§   | 3.2, –<br>§   | 2.4, –<br>§   | 2.9, –<br>§   | 1.4,<br>_§             | 2.0,<br>_§             | 1.9, –<br>§   | 4.8, –<br>§   | 3.2, – <sup>§</sup> |
|                                              | n         | 86            | 69            | 42            | 14            | 48                     | 9                      | 4             | 6             | 278                 |
| Proteus mirabilis                            | %I        | 5.8, –<br>§   | 2.9, –<br>§   | 2.4, –<br>§   | 7.1, –<br>§   | 10.4,<br>_§            | n/a                    | n/a           | n/a           | 5.8, — <sup>§</sup> |
|                                              | %R        | 2.3, –<br>§   | 5.8, –<br>§   | 2.4, –<br>§   | 0.0, –<br>§   | 2.1,<br>_§             | n/a                    | n/a           | n/a           | 3.2, – <sup>§</sup> |
|                                              | n         | 13            | 16            | 15            | 0             | 18                     | 12                     | 10            | 3             | 87                  |
| <i>Salmonella</i> species<br>(non-typhoidal) | %I        | 0.0, –<br>§   | 6.3, –<br>§   | 0.0, –<br>§   | n/a           | 0.0,<br>_§             | 0.0,<br>_§             | 0.0, –<br>§   | n/a           | 1.1, —§             |
| (non typnoladi)                              | %R        | 0.0, –<br>§   | 0.0, –<br>§   | 0.0, –<br>§   | n/a           | 0.0,<br>_§             | 0.0,<br>_§             | 0.0, –<br>§   | n/a           | 0.0, -§             |
|                                              | n         | 6             | 15            | 2             | 1             | 5                      | 1                      | 1             | 3             | 34                  |
| <i>Salmonella</i> species<br>(typhoidal)     | %I        | n/a           | 0.0, –<br>§   | n/a           | n/a           | n/a                    | n/a                    | n/a           | n/a           | 2.9, –§             |
|                                              | %R        | n/a           | 0.0, –<br>§   | n/a           | n/a           | n/a                    | n/a                    | n/a           | n/a           | 0.0, -§             |
| Ampicillin                                   |           |               |               |               |               |                        |                        |               |               |                     |
|                                              | n         | 1,768         | 1,053         | 711           | 439           | 695                    | 231                    | 170           | 190           | 5,257               |
| Escherichia coli                             | %I        | 1.1, –<br>#   | 2.6, –<br>#   | 0.8, –<br>#   | 1.4, –<br>#   | 1.4,<br>_ <sup>#</sup> | 1.7,<br>_ <sup>#</sup> | 0.6, –<br>#   | 2.1, –<br>#   | 1.5, –#             |
|                                              | %R        | 50.1,<br>51.2 | 47.4,<br>50.0 | 47.5,<br>48.4 | 51.3,<br>52.6 | 55.0,<br>56.4          | 36.8,<br>38.5          | 69.4,<br>70.0 | 50.5,<br>52.6 | 50.0,<br>51.5       |
|                                              | n         | 113           | 69            | 43            | 31            | 48                     | 9                      | 4             | 6             | 323                 |
| Proteus mirabilis                            | %I        | 0.0, –<br>#   | 0.0, –<br>#   | 0.0, -        | 0.0, –<br>#   | 4.2,<br>_ <sup>#</sup> | n/a                    | n/a           | n/a           | 0.6,#               |
|                                              | %R        | 17.7,<br>17.7 | 14.5,<br>14.5 | 7.0,<br>7.0   | 19.4,<br>19.4 | 18.8,<br>22.9          | n/a                    | n/a           | n/a           | 15.8,<br>16.4       |
|                                              | n         | 21            | 16            | 16            | 0             | 18                     | 12                     | 10            | 3             | 96                  |
| <i>Salmonella</i> species<br>(non-typhoidal) | %I        | 0.0, –<br>#   | 0.0, –<br>#   | 0.0, –<br>#   | n/a           | 0.0,<br>_#             | 0.0,<br>_#             | 0.0, –<br>#   | n/a           | 0.0, -#             |
|                                              | %R        | 9.5,<br>9.5   | 12.5,<br>12.5 | 0.0,<br>0.0   | n/a           | 5.6,<br>5.6            | 0.0,<br>0.0            | 0.0,<br>0.0   | n/a           | 5.2, 5.2            |
|                                              | n         | 9             | 15            | 2             | 1             | 5                      | 1                      | 1             | 3             | 37                  |
| <i>Salmonella</i> species<br>(typhoidal)     | %I        | n/a           | 0.0, –<br>#   | n/a           | n/a           | n/a                    | n/a                    | n/a           | n/a           | 0.0, -#             |
|                                              | %R        | n/a           | 0.0,<br>0.0   | n/a           | n/a           | n/a                    | n/a                    | n/a           | n/a           | 18.9,<br>18.9       |
| Cefazolin                                    |           |               |               |               |               |                        |                        |               |               |                     |
| Fooboristis as!                              | n         | 1,401         | 1,054         | 710           | 174           | 695                    | 200                    | 170           | 190           | 4,594               |
| Escherichia coli                             | %R        | 25.5,<br>25.5 | 18.8,<br>18.8 | 19.0,<br>19.0 | 21.8,<br>21.8 | 23.7,<br>23.7          | 10.5,<br>10.5          | 35.9,<br>35.9 | 24.7,<br>24.7 | 22.2,<br>22.2       |
| Klobaialla avutasa                           | n         | 59            | 78            | 30            | 13            | 43                     | 15                     | 5             | 10            | 253                 |
| Klebsiella oxytoca                           | %R        | 59.3,<br>59.3 | 42.3,<br>42.3 | 40.0,<br>40.0 | 69.2,<br>69.2 | 86.0,<br>86.0          | 80.0,<br>80.0          | n/a           | 60.0,<br>60.0 | 58.1,<br>58.1       |
| Klebsiella<br>preumoniae complex             | n         | 343           | 282           | 227           | 34            | 212                    | 43                     | 52            | 42            | 1,235               |
| pneumoniae complex                           | %R        | 12.0,         | 9.6,          | 6.6,          | 11.8,         | 7.1,                   | 11.6,                  | 26.9,         | 9.5,          | 10.1,               |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Antimicrobial agent  | Cotonomit | CL   | SI and E    |     | percenta | ge susc | eptibili | ty at indi | icated c | ategory             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|------|-------------|-----|----------|---------|----------|------------|----------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | Category  | NSW  | Vic         | Qld | SA       | WA      | Tas      | NT         | ACT      | Australia           |
| Proteus mirabilis $\gamma_{KR}$ $17.3$ $20.3$ $14.0$ $7.1$ $22.9$ $na$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |           | 12.0 | 9.6         | 6.6 | 11.8     | 7.1     | 11.6     | 26.9       | 9.5      | 10.1                |
| %R         17.3         20.3         14.0         7.1         22.9         n/a         n/a         n/a         17.7           Cefepime         n         8         13         3         3         4         1         8         0         40           Acinetobacter baumannii         %R         n/a         7.7         n/a         n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | n         | 75   | 69          | 43  | 14       | 48      | 6        | 4          | 6        | 265                 |
| Acine obscrep<br>baumannii         n         8         13         3         3         4         1         8         0         40           Acine obscrep<br>baumannii         9(1)         n/a $7.7$<br>3         n/a         n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Proteus mirabilis    | %R        |      |             |     |          |         | n/a      | n/a        | n/a      |                     |
| $ \begin{array}{l c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cefepime             |           |      |             |     |          |         |          |            |          |                     |
| baumannii         %R         n/a         n/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | n         | 8    |             | 3   | 3        | 4       | 1        | 8          | 0        | 40                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | %I        | n/a  | -           | n/a | n/a      | n/a     | n/a      | n/a        | n/a      | 5.0, — <sup>§</sup> |
| Enterobacter cloacee<br>complex         %SDD/I         6.5,<br>10.0         9.2,<br>9.2         1.1,<br>5.7         22.7,<br>31.8         0.0,<br>0.0         5.3,<br>5.3         n/a         0.0,<br>5.6         3.6, 8.6           %R         1.3,<br>5.3         4.1         1.1,<br>1.1         0.0,<br>0.0         5.3,<br>0.0         n/a         0.0,<br>0.0         5.3,<br>0.0         n/a         0.0,<br>0.0         5.3,<br>0.0         n/a         0.0,<br>0.0         1.9,<br>0.0         3.6, 8.6           Escherichia coli         %SDD/I         6.4,<br>6.4         5.8         5.1         5.2         6.5         3.5         2.06         1.1,<br>2.1, 6.6           %R         2.6,<br>2.6         1.9,<br>1.8         1.4,<br>4.3         4.3,<br>1.7         1.7,<br>0.9         0.6,<br>1.1,<br>2.1, 2.1, 3.1           Klebsiella aerogenes         n         39         29         15         13         18         7         3         5         129           Klebsiella aerogenes         n         86         78         30         28         43         16         5         10         296           Klebsiella aerogenes         n         86         78         30         28         43         16         52         40         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | %R        | n/a  | 0.0, –<br>§ | n/a | n/a      | n/a     | n/a      | n/a        | n/a      | 7.5, —§             |
| End obsector         Solution         10.0         9.2         5.7         31.8         2.0         5.3         Inta         5.6         5.0.50           complex $\frac{9}{6}R$ 1.2         4.1         1.1         0.0         0.0         5.3         n/a         0.0         1.9, 3.4           n         1.771         1.054         711         439         695         231         170         190         5.261           %SDD/I         3.0         1.0,         0.8,         4.8,         1.4,         0.4,         4.1,         0.0,         5.3         1.1         2.1         6.5           %SDD/I         2.6,         1.9,         1.4,         4.3,         1.7,         0.9,         0.6,         1.1,         2.1, 3.1           Klebsiella aerogenes $^{\infty}$ SDD/I         2.6,         0.0,         0.0,         7.7,         0.0,         n/a         n/a         2.3, 3.1           Klebsiella aerogenes $^{\infty}$ SDD/I         2.6,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | n         | 170  | 98          | 88  | 22       | 51      | 19       | 9          | 18       | 475                 |
| %R         1.2,<br>4.1,<br>1.1         1.1,<br>1.1         0.0,<br>0.0         5.3,<br>0.0         n/a         0.0,<br>0.0         1.9, 3.4           Escherichia coli         %SDD/I         6.4         7.11         439         695         231         170         190         5,261           %SDD/I         6.4         5.8         5.1         5.2         6.5         3.5         20.6         1.21         2.1, 6.6           %R         2.6         1.8         5.9         2.4         0.9         4.1         1.1         2.1, 3.1           M         39         29         15         1.3         18         7         3         5         129           Klebsiella aerogenes         %SDD/I         2.6         6.9         0.0         7.7         0.0         n/a         n/a         0.0         2.3.31           Klebsiella aerogenes         %SDD/I         2.6         6.9         0.0         0.0         n/a         n/a         0.0         0.0         1.3         1.4         0.43         1.6         5         10         2.9         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <td></td> <td>%SDD/I</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>n/a</td> <td></td> <td>3.6, 8.6</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | %SDD/I    |      |             |     |          |         |          | n/a        |          | 3.6, 8.6            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | %R        |      |             |     |          |         |          | n/a        |          | 1.9, 3.4            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | n         |      |             |     |          |         |          |            |          | 5,261               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Escherichia coli     | %SDD/I    | 6.4  | 5.8         | 5.1 | 5.2      | 6.5     | 3.5      | 20.6       | 12.1     | 2.1, 6.6            |
| Klebsiella aerogenes         %SDD/l         2.6,<br>2.6         0.0,<br>6.9         0.0,<br>0.0         7.7,<br>0.0,<br>0.0         0.0,<br>0.0         n/a         n/a         n/a         2.3, 3.1           %R         0.0,<br>0.0         0.0,<br>0.0         0.0,<br>0.0,<br>0.0,<br>7.7         0.0,<br>0.0,<br>0.0,<br>0.0,<br>0.0,<br>0.0,<br>0.0,<br>0.0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | %R        |      |             |     |          |         |          |            |          | 2.1, 3.1            |
| Klebsiella aerogenes         %SDD/I         2.6         6.9         0.0         0.0         1/14         1/14         1/14         2.3, 3.1           %R         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         n/a         n/a         n/a         0.0,         1.6           Klebsiella oxytoca         %SDD/I         1.2         0.0         0.0,         0.0,         0.0,         0.0,         6.3         n/a         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0,         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | n         | 39   | 29          | 15  | 13       | 18      | 7        | 3          | 5        | 129                 |
| Klebsiella oxytocan867830284316510296Klebsiella oxytocan867830284316510296%SDD/l1.20.00.00.00.00.00.00.00.00.00.0%R1.20.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Klebsiella aerogenes | %SDD/I    |      |             |     |          |         | n/a      | n/a        | n/a      | 2.3, 3.1            |
| n         86         78         30         28         43         16         5         10         296           Klebsiella oxytoca         %SDD/l         1.2         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | %R        |      |             | ,   |          |         | n/a      | n/a        | n/a      | 0.0, 1.6            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | n         |      |             |     |          |         | 16       | 5          | 10       | 296                 |
| NR         1.2         0.0         0.0         0.0         0.0         1/4         0.0         0.0, 0.3           Klebsiella<br>pneumoniae complex         n         444         282         227         83         212         50         52         42         1,392           Klebsiella<br>pneumoniae complex         %SDD/I         0.7,<br>3.4         0.7,<br>2.9         1.3,<br>2.8         0.9         2.4         3.3         6.0         15.4         2.4,<br>2.4         0.9, 3.3           Proteus mirabilis         n         113         69         43         31         48         9         4         6         323           Proteus mirabilis         n         113         69         43         31         48         9         4         6         323           Proteus mirabilis         %SDD/I         0.9,<br>1.8         0.0         0.0,<br>0.0         3.2,<br>0.0         0.0,<br>n/a         n/a         n/a         0.6, 0.6           Pseudomonas<br>aeruginosa         n         271         146         154         76         113         35         13         30         838           Pseudomonas<br>aeruginosa         %I         2.6,<br>5.5         4.2,<br>11.0         4.5         3.6,<br>7         0.0,<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Klebsiella oxytoca   | %SDD/I    |      |             |     |          |         |          | n/a        |          | 0.0, 0.7            |
| Klebsiella<br>pneumoniae complex         %SDD/I         0.7,<br>3.4         0.7,<br>2.9,<br>3.2         1.3,<br>1.8         0.9,<br>9.9         2.4         3.3,<br>3.3         6.0,<br>6.0,<br>9.0         2.4,<br>1.5,<br>3.8         0.9,<br>7.1         2.4,<br>2.4         0.9,<br>3.3         2.4,<br>6.0         0.9,<br>1.5,<br>2.0         2.4,<br>3.8         0.9,<br>7.1         1.7, 2.2           Proteus mirabilis         n         113         69         43         31         48         9         4         6         323           Proteus mirabilis         %SDD/I         0.9,<br>1.8         60         0.0,<br>0.0         3.2,<br>0.0         0.0,<br>0.0         n/a         n/a         n/a         0.6, 0.9           %SDD/I         1.8,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         n/a         n/a         n/a         0.6, 0.9           %R         1.8,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         n/a         n/a         n/a         0.6, 0.9           Pseudomonas<br>aeruginosa         n         271         146         154         76         113         35         13         30         838           %R         2.5         11.0         4.5         13.2         18         5.7         0.0         0.0,         2.9,6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | %R        |      |             |     |          |         |          | n/a        |          | 0.0, 0.3            |
| Neusreia<br>pneumoniae complex         NSDD/I         3.4         2.8         0.9         2.4         3.3         6.0         15.4         2.4         0.9, 3.3           meumoniae complex         %R         2.9,<br>3.2         1.1,<br>1.8         0.9,<br>3.2         0.0,<br>1.8         0.0,<br>0.0,<br>3.2         0.0,<br>0.9         0.0,<br>2.0         3.8,<br>3.8         7.1,<br>7.1         1.7, 2.2           n         113         69         43         31         48         9         4         6         323           Proteus mirabilis         %SDD/I         0.9,<br>1.8         0.0,<br>0.0         0.0,<br>0.0         3.2,<br>0.0         0.0,<br>n/a         n/a         n/a         0.6, 0.9           %R         1.8,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         n/a         n/a         n/a         0.6, 0.6           Pseudomonas<br>aeruginosa         n         271         146         154         76         113         35         13         30         838           Pseudomonas<br>aeruginosa         %I         3.0,<br>94.5         6.2,<br>89.0         1.9,<br>95.5         86.8         98.2         94.3         100.0         10.0,<br>10.0         2.9, 6.2           N         2.6,<br>1.10         4.8         2.6,<br>3.0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | n         |      |             |     |          |         |          |            |          | 1,392               |
| NoR         3.2         1.8         1.8         0.0         0.9         2.0         3.8         7.1         1.7, 2.2           Proteus mirabilis         n         113         69         43         31         48         9         4         6         323           Proteus mirabilis         %SDD/I         0.9, 0.0, 0.0, 0.0, 3.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | %SDD/I    | 3.4  | 2.8         | 0.9 | 2.4      | 3.3     | 6.0      | 15.4       | 2.4      | 0.9, 3.3            |
| Proteus mirabilis $\%$ SDD/I $0.9$<br>1.8 $0.0$<br>1.8 $0.0$<br>0.0 $3.2$<br>3.2 $0.0$<br>0.0 $n/a$ $n/a$ $n/a$ $0.6$ $0.6$ $\%$ R $1.8$<br>1.8 $0.0$<br>0.0 $0.0$<br>0.0 $0.0$<br>0.0 $0.0$<br>0.0 $0.0$<br>0.0 $n/a$ $n/a$ $n/a$ $0.6$ $0.6$ $Pseudomonasaeruginosan27114615494.57689.011395.53586.898.298.294.394.30.0100.00.0100.03.393.8Pseudomonasaeruginosan27194.514689.015595.586.888.898.298.294.394.30.0100.00.0100.03.393.8Pseudomonasaeruginosan2194.514689.015595.586.889.298.294.394.3100.00.00.00.0100.03.393.8Pseudomonasaeruginosan2194.514689.015.713.20.0180.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | %R        |      |             |     |          |         |          |            |          | 1.7, 2.2            |
| Proteus mirabilis         %3DD/I         1.8         0.0         0.0         3.2         0.0         1//a         1//a         1//a         0.0         0.0         0.0         3.2         0.0         1//a         1//a         1//a         0.0         0.0         0.0         3.2         0.0         1//a         1//a         1//a         1//a         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         n/a         n/a         n/a         0.6, 0.6         0.6, 0.6         0.0         0.0         0.0         0.0         0.0         n/a         n/a         n/a         0.6, 0.6         0.6, 0.6           Pseudomonas<br>aeruginosa         n         271         146         154         76         113         35         13         30         838           Pseudomonas<br>aeruginosa         %I         3.0,<br>94.5         6.2,<br>89.0         95.5         86.8         98.2         94.3         100.0         100.0         3.3, 93.8           Salmonella species<br>(non-typhoidal)         n         21         16         16         0         18         12         10         3         96           Salmonella species<br>(typhoidal)         %SDD/I         0.0,<br>0.0 </td <td></td> <td>n</td> <td>113</td> <td>69</td> <td>43</td> <td></td> <td></td> <td>9</td> <td>4</td> <td>6</td> <td>323</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | n         | 113  | 69          | 43  |          |         | 9        | 4          | 6        | 323                 |
| Normalization         Normalis at thinditation         Normalis at the interval dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Proteus mirabilis    | %SDD/I    |      |             |     |          |         | n/a      | n/a        | n/a      | 0.6, 0.9            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | %R        |      |             |     |          |         | n/a      | n/a        | n/a      | 0.6, 0.6            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | n         |      |             |     |          |         | 35       | 13         | 30       | 838                 |
| $\frac{\%R}{(non-typhoidal)} = \frac{2.6}{5.5} + \frac{4.8}{11.0} + \frac{2.6}{4.5} + \frac{3.9}{13.2} + \frac{3.9}{1.8} + \frac{5.7}{5.7} + \frac{0.0}{0.0} + \frac{0.0}{0.0} + \frac{2.9}{2.9} + \frac{6.2}{6.2}$ $\frac{N}{5.5} + \frac{11.0}{11.0} + \frac{4.5}{4.5} + \frac{13.2}{13.2} + \frac{1.8}{1.8} + \frac{5.7}{5.7} + \frac{0.0}{0.0} +$ |                      | %I        |      |             |     |          |         |          |            |          | 3.3, 93.8           |
| Salmonella species<br>(non-typhoidal)         %SDD/I         0.0,<br>0.0         6.3,<br>6.3         0.0,<br>0.0         n/a         0.0,<br>5.6         0.0,<br>0.0         0.0,<br>0.0         n/a         1.0, 2.1           %R         4.8,<br>4.8         0.0,<br>0.0         0.0,<br>0.0         n/a         0.0,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         n/a         1.0, 2.1           %R         4.8,<br>4.8         0.0,<br>0.0         0.0,<br>0.0         n/a         0.0,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         n/a         1.0, 2.1           %R         4.8,<br>4.8         0.0,<br>0.0         0.0,<br>0.0         n/a         0.0,<br>0.0         n/a         0.0,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         n/a         1.0, 1.0           %SDD/I         n/a         0.0,<br>0.0         n/a         n/a         n/a         n/a         0.0, 0.0           Salmonella species<br>(typhoidal)         %SDD/I         n/a         0.0,<br>0.0         n/a         n/a         n/a         n/a         0.0, 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | aoraginoca           | %R        |      |             |     |          |         |          |            |          | 2.9, 6.2            |
| Salmonella species<br>(non-typhoidal)         %SDD/I         0.0         6.3         0.0         N/a         5.6         0.0         0.0         N/a         1.0, 2.1           %R         4.8,<br>4.8         0.0,<br>0.0         0.0,<br>0.0         n/a         0.0,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         n/a         1.0, 2.1           %R         4.8,<br>4.8         0.0,<br>0.0         0.0,<br>0.0         n/a         0.0,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         n/a         1.0, 2.1           %R         4.8,<br>4.8         0.0,<br>0.0         0.0,<br>0.0         n/a         0.0,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         n/a         1.0, 2.1           %R         4.8,<br>4.8         0.0,<br>0.0         0.0,<br>0.0         n/a         0.0,<br>0.0         0.0,<br>0.0         n/a         1.0, 1.0           %SDD/I         n/a         0.0,<br>0.0         n/a         n/a         n/a         n/a         n/a         0.0, 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | n         | 21   | 16          | 16  | 0        | 18      | 12       | 10         | 3        | 96                  |
| %R         4.8,<br>4.8         0.0,<br>0.0         0.0,<br>0.0         n/a         0.0,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         0.0,<br>0.0         n/a         1.0, 1.0           n         9         15         2         1         5         1         1         3         37           Salmonella species<br>(typhoidal)         %SDD/I         n/a         0.0,<br>0.0         n/a         n/a         n/a         n/a         n/a         0.0, 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | %SDD/I    | 0.0  | 6.3         |     | n/a      | 5.6     | 0.0      | 0.0        | n/a      | 1.0, 2.1            |
| n         9         15         2         1         5         1         1         3         37           Salmonella species<br>(typhoidal)         %SDD/I         n/a         0.0,<br>0.0         n/a         n/a         n/a         n/a         n/a         0.0, 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | %R        |      |             |     | n/a      |         |          |            | n/a      | 1.0, 1.0            |
| (typhoidal) %SDD/1 1/a 0.0 1/a 1/a 1/a 1/a 1/a 1/a 1/a 1/a 0.0, 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | n         | 9    |             |     | 1        | 5       |          |            | 3        | 37                  |
| %R n/a 0.0, n/a n/a n/a n/a n/a 8.1, 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | %SDD/I    | n/a  |             | n/a | n/a      | n/a     | n/a      | n/a        | n/a      | 0.0, 0.0            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | %R        | n/a  | 0.0,        | n/a | n/a      | n/a     | n/a      | n/a        | n/a      | 8.1, 8.1            |

| Antimicrobial agent                              | Cotogomit | CL            | SI and E      | UCAST         | percenta      | ge susc       | eptibilit     | y at ind     | icated c     | ategory              |
|--------------------------------------------------|-----------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|--------------|----------------------|
| and species                                      | Category* | NSW           | Vic           | Qld           | SA            | WA            | Tas           | NT           | ACT          | Australia            |
|                                                  |           |               | 0.0           |               |               |               |               |              |              |                      |
|                                                  | n         | 105           | 52            | 36            | 7             | 35            | 8             | 4            | 10           | 257                  |
| Serratia marcescens                              | %SDD/I    | 0.0,<br>0.0   | 1.9,<br>0.0   | 0.0,<br>0.0   | n/a           | 0.0,<br>0.0   | n/a           | n/a          | 0.0,<br>0.0  | 0.4, 0.4             |
|                                                  | %R        | 1.0,<br>1.0   | 1.9,<br>3.8   | 0.0,<br>0.0   | n/a           | 0.0,<br>0.0   | n/a           | n/a          | 0.0,<br>0.0  | 0.8, 1.2             |
| Cefoxitin                                        |           |               |               |               |               |               |               |              |              |                      |
| Escherichia coli                                 | n         | 1,771         | 1,053         | 711           | 439           | 695           | 231           | 170          | 190          | 5,260                |
| Eschenchia com                                   | %R/ecoff  | 4.7,<br>6.9   | 2.4,<br>4.5   | 3.9,<br>5.5   | 2.5,<br>3.9   | 2.4,<br>4.5   | 0.9,<br>2.6   | 1.8,<br>2.9  | 2.6,<br>5.3  | 3.3, 5.3             |
| Klebsiella oxytoca                               | n         | 86            | 78            | 30            | 28            | 43            | 16            | 5            | 10           | 296                  |
|                                                  | %R/ecoff  | 1.2,<br>2.3   | 1.3,<br>1.3   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>6.3   | n/a          | 0.0,<br>0.0  | 0.7, 1.4             |
| Klebsiella                                       | n         | 444           | 282           | 227           | 83            | 212           | 50            | 52           | 42           | 1,392                |
| pneumoniae complex                               | %R/ecoff  | 3.6,<br>5.4   | 3.9,<br>6.0   | 2.6,<br>3.5   | 2.4,<br>4.8   | 3.8,<br>5.7   | 0.0,<br>0.0   | 3.8,<br>5.8  | 2.4,<br>2.4  | 3.3, 5.0             |
| Drotous mirchills                                | n         | 113           | 69            | 43            | 31            | 48            | 9             | 4            | 6            | 323                  |
| Proteus mirabilis                                | %R/ecoff  | 0.9,<br>2.7   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | n/a          | n/a          | 0.3, 1.2             |
| Salmonella species                               | n         | 21            | 16            | 16            | 0             | 18            | 12            | 10           | 3            | 96                   |
| (non-typhoidal)                                  | %R/ecoff  | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0  | n/a          | 0.0, 1.0             |
| Salmonella species                               | n         | 9             | 15            | 2             | 1             | 5             | 1             | 1            | 3            | 37                   |
| (typhoidal)                                      | %R/ecoff  | n/a           | 0.0,<br>0.0   | n/a           | n/a           | n/a           | n/a           | n/a          | n/a          | 0.0, 0.0             |
| Ceftazidime                                      |           |               |               |               |               |               |               |              |              |                      |
|                                                  | n         | 8             | 13<br>7 7     | 21            | 3             | 4             | 1             | 8            | 1            | 59                   |
| <i>Acinetobacter</i><br><i>baumannii</i> complex | %I        | n/a           | 7.7, –<br>§   | 4.8, –<br>§   | n/a           | n/a           | n/a           | n/a          | n/a          | 11.9, – <sup>§</sup> |
|                                                  | %R        | n/a           | 0.0, –<br>§   | 4.8, –<br>§   | n/a           | n/a           | n/a           | n/a          | n/a          | 3.4, – <sup>§</sup>  |
|                                                  | n         | 170           | 98            | 88            | 22            | 51            | 19            | 9            | 18           | 475                  |
| Enterobacter cloacae complex                     | %I        | 1.2,<br>5.3   | 1.0,<br>1.0   | 1.1,<br>1.1   | 0.0,<br>4.5   | 0.0,<br>3.9   | 5.3,<br>0.0   | n/a          | 0.0,<br>16.7 | 1.1, 3.6             |
|                                                  | %R        | 29.4,<br>30.6 | 25.5,<br>26.5 | 15.9,<br>17.0 | 50.0,<br>50.0 | 5.9,<br>5.9   | 26.3,<br>31.6 | n/a          | 5.6,<br>5.6  | 23.6,<br>24.6        |
|                                                  | n         | 1,771         | 1,054         | 711           | 439           | 695           | 231           | 170          | 190          | 5,261                |
| Escherichia coli                                 | %I        | 1.5,<br>7.6   | 0.1,<br>6.2   | 0.6,<br>6.6   | 2.3,<br>6.2   | 0.3,<br>6.5   | 0.4,<br>3.5   | 0.0,<br>20.6 | 1.1,<br>11.6 | 0.9, 7.3             |
|                                                  | %R        | 6.1,<br>7.6   | 4.9,<br>5.0   | 4.4,<br>4.9   | 4.3,<br>6.6   | 4.5,<br>4.7   | 1.7,<br>2.2   | 7.1,<br>7.1  | 3.2,<br>4.2  | 5.0, 5.9             |
|                                                  | n         | 39            | 29            | 15            | 13            | 18            | 7             | 3            | 5            | 129                  |
| Klebsiella aerogenes                             | %I        | 2.6,<br>7.7   | 3.4,<br>3.4   | 6.7,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>5.6   | n/a           | n/a          | n/a          | 3.1, 3.9             |
|                                                  | %R        | 28.2,<br>30.8 | 34.5,<br>37.9 | 6.7,<br>13.3  | 53.8,<br>53.8 | 11.1,<br>11.1 | n/a           | n/a          | n/a          | 30.2,<br>33.3        |
|                                                  | n         | 86            | 78            | 30            | 28            | 43            | 16            | 5            | 10           | 296                  |
| Klebsiella oxytoca                               | %I        | 1.2,<br>1.2   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a          | 0.0,<br>0.0  | 0.3, 0.3             |
|                                                  | %R        | 0.0,<br>1.2   | 1.3,<br>1.3   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a          | 0.0,<br>0.0  | 0.3, 0.7             |
| Klebsiella                                       | n         | 444           | 282           | 227           | 83            | 212           | 50            | 52           | 42           | 1,392                |
| pneumoniae complex                               | %I        | 1.4,<br>1.6   | 1.1,<br>2.5   | 0.9,<br>0.9   | 0.0,<br>3.6   | 0.0,<br>2.4   | 0.0,<br>0.0   | 3.8,<br>3.8  | 0.0,<br>0.0  | 0.9, 1.9             |

| Antimicrobial agent<br>and species           | Cotogogy  | CLS           | SI and E      |               | percenta      | ge susc       | eptibili      | ty at indi    | icated c      | ategory             |
|----------------------------------------------|-----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------------|
| and species                                  | Category* | NSW           | Vic           | Qld           | SA            | WA            | Tas           | NT            | ACT           | Australia           |
|                                              | %R        | 5.4,<br>6.8   | 2.8,<br>3.9   | 2.2,<br>3.1   | 2.4,<br>2.4   | 3.3,<br>3.3   | 8.0,<br>8.0   | 13.5,<br>17.3 | 9.5,<br>9.5   | 4.4, 5.3            |
|                                              | n         | 113           | 69            | 43            | 31            | 48            | 9             | 4             | 6             | 323                 |
| Proteus mirabilis                            | %I        | 0.9,<br>0.9   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | n/a           | n/a           | 0.3, 0.6            |
|                                              | %R        | 1.8,<br>2.7   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | n/a           | n/a           | 0.6, 0.9            |
|                                              | n         | 270           | 146           | 154           | 76            | 113           | 35            | 13            | 30            | 837                 |
| Pseudomonas<br>aeruginosa                    | %I        | 5.9,<br>89.3  | 8.9,<br>83.6  | 3.9,<br>92.2  | 5.3,<br>82.9  | 3.5,<br>94.7  | 2.9,<br>91.4  | 7.7,<br>92.3  | 3.3,<br>96.7  | 5.5, 89.4           |
| -                                            | %R        | 4.8,<br>10.7  | 7.5,<br>16.4  | 3.9,<br>7.8   | 11.8,<br>17.1 | 1.8,<br>5.3   | 5.7,<br>8.6   | 0.0,<br>7.7   | 0.0,<br>3.3   | 5.1, 10.6           |
|                                              | n         | 21            | 16            | 16            | 0             | 18            | 12            | 10            | 3             | 96                  |
| <i>Salmonella</i> species<br>(non-typhoidal) | %I        | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | 0.0, 0.0            |
|                                              | %R        | 4.8,<br>4.8   | 6.3,<br>6.3   | 0.0,<br>0.0   | n/a           | 5.6,<br>5.6   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | 3.1, 3.1            |
|                                              | n         | 9             | 15            | 2             | 1             | 5             | 1             | 1             | 3             | 37                  |
| Salmonella species<br>(typhoidal)            | %I        | n/a           | 0.0,<br>0.0   | n/a           | n/a           | n/a           | n/a           | n/a           | n/a           | 0.0, 0.0            |
|                                              | %R        | n/a           | 0.0,<br>0.0   | n/a           | n/a           | n/a           | n/a           | n/a           | n/a           | 8.1, 8.1            |
|                                              | n         | 105           | 52            | 36            | 7             | 35            | 8             | 4             | 10            | 257                 |
| Serratia marcescens                          | %I        | 0.0,<br>1.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | 0.0,<br>0.0   | n/a           | n/a           | 0.0,<br>0.0   | 0.4, 0.4            |
|                                              | %R        | 1.9,<br>1.9   | 3.8,<br>3.8   | 0.0,<br>0.0   | n/a           | 0.0,<br>0.0   | n/a           | n/a           | 0.0,<br>0.0   | 1.6, 1.9            |
| Ceftriaxone                                  |           |               |               |               |               |               |               |               |               |                     |
|                                              | n         | 6             | 18            | 21            | 2             | 4             | 3             | 8             | 1             | 63                  |
| Acinetobacter<br>baumannii complex           | %I        | n/a           | 72.2,<br>_§   | 61.9,<br>_§   | n/a           | n/a           | n/a           | n/a           | n/a           | 68.2, –§            |
|                                              | %R        | n/a           | 0.0, –<br>§   | 4.8, –<br>§   | n/a           | n/a           | n/a           | n/a           | n/a           | 4.5, – <sup>§</sup> |
|                                              | n         | 170           | 98            | 88            | 22            | 51            | 19            | 9             | 18            | 475                 |
| <i>Enterobacter cloacae</i> complex          | %I        | 0.6,<br>0.6   | 0.0,<br>0.0   | 1.1,<br>1.1   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | 0.0,<br>0.0   | 0.4, 0.4            |
|                                              | %R        | 35.9,<br>35.9 | 29.6,<br>29.6 | 18.2,<br>18.2 | 54.5,<br>54.5 | 9.8,<br>9.8   | 31.6,<br>31.6 | n/a           | 16.7,<br>16.7 | 28.4,<br>28.4       |
|                                              | n         | 1,771         | 1,054         | 711           | 439           | 695           | 231           | 170           | 190           | 5,261               |
| Escherichia coli                             | %I        | 0.2,<br>0.2   | 0.1,<br>0.1   | 0.0,<br>0.0   | 0.2,<br>0.2   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.1, 0.1            |
|                                              | %R        | 14.0,<br>14.0 | 11.2,<br>11.2 | 10.4,<br>10.4 | 12.3,<br>12.3 | 11.8,<br>11.8 | 5.2,<br>5.2   | 28.2,<br>28.2 | 16.3,<br>16.3 | 12.7,<br>12.7       |
|                                              | n         | 39            | 29            | 15            | 13            | 18            | 7             | 3             | 5             | 129                 |
| Klebsiella aerogenes                         | %I        | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 7.7,<br>7.7   | 0.0,<br>0.0   | n/a           | n/a           | n/a           | 0.8, 0.8            |
|                                              | %R        | 33.3,<br>33.3 | 37.9,<br>37.9 | 13.3,<br>13.3 | 46.2,<br>46.2 | 11.1,<br>11.1 | n/a           | n/a           | n/a           | 33.3,<br>33.3       |
|                                              | n         | 86            | 78            | 30            | 28            | 43            | 16            | 5             | 10            | 296                 |
| Klebsiella oxytoca                           | %I        | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 2.3,<br>2.3   | 0.0,<br>0.0   | n/a           | 0.0,<br>0.0   | 0.3, 0.3            |
|                                              | %R        | 9.3,<br>9.3   | 3.8,<br>3.8   | 0.0,<br>0.0   | 3.6,<br>3.6   | 4.7,<br>4.7   | 12.5,<br>12.5 | n/a           | 10.0,<br>10.0 | 5.7, 5.7            |
| Klebsiella                                   | n         | 444           | 282           | 227           | 83            | 212           | 50            | 52            | 42            | 1,392               |

| Antimicrobial agent                          | Cotogomit | CLS           | SI and E      | JCAST         | percenta      | ge susc       | eptibili    | ty at indi    | icated ca     | ategory       |
|----------------------------------------------|-----------|---------------|---------------|---------------|---------------|---------------|-------------|---------------|---------------|---------------|
| and species                                  | Category* | NSW           | Vic           | Qld           | SA            | WA            | Tas         | NT            | ACT           | Australia     |
| pneumoniae complex                           | %I        | 0.2,<br>0.2   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0 | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.1, 0.1      |
|                                              | %R        | 7.7,<br>7.7   | 6.4,<br>6.4   | 3.1,<br>3.1   | 4.8,<br>4.8   | 4.7,<br>4.7   | 8.0,<br>8.0 | 21.2,<br>21.2 | 9.5,<br>9.5   | 6.6, 6.6      |
|                                              | n         | 113           | 69            | 43            | 31            | 48            | 9           | 4             | 6             | 323           |
| Proteus mirabilis                            | %I        | 0.9,<br>0.9   | 0.0,<br>0.0   | 0.0,<br>0.0   | 3.2,<br>3.2   | 0.0,<br>0.0   | n/a         | n/a           | n/a           | 0.6, 0.6      |
|                                              | %R        | 3.5,<br>3.5   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a         | n/a           | n/a           | 1.2, 1.2      |
|                                              | n         | 21            | 16            | 16            | 0             | 18            | 12          | 10            | 3             | 96            |
| <i>Salmonella</i> species<br>(non-typhoidal) | %I        | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | 0.0,<br>0.0   | 0.0,<br>0.0 | 0.0,<br>0.0   | n/a           | 0.0, 0.0      |
|                                              | %R        | 4.8,<br>4.8   | 6.3,<br>6.3   | 0.0,<br>0.0   | n/a           | 5.6,<br>5.6   | 0.0,<br>0.0 | 0.0,<br>0.0   | n/a           | 3.1, 3.1      |
|                                              | n         | 9             | 15            | 2             | 1             | 5             | 1           | 1             | 3             | 37            |
| Salmonella species<br>(typhoidal)            | %I        | n/a           | 0.0,<br>0.0   | n/a           | n/a           | n/a           | n/a         | n/a           | n/a           | 0.0, 0.0      |
|                                              | %R        | n/a           | 0.0,<br>0.0   | n/a           | n/a           | n/a           | n/a         | n/a           | n/a           | 8.1, 8.1      |
|                                              | n         | 105           | 52            | 36            | 7             | 35            | 8           | 4             | 10            | 257           |
| Serratia marcescens                          | %I        | 1.0,<br>1.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | 0.0,<br>0.0   | n/a         | n/a           | 0.0,<br>0.0   | 0.4, 0.4      |
|                                              | %R        | 2.9,<br>2.9   | 5.8,<br>5.8   | 2.8,<br>2.8   | n/a           | 0.0,<br>0.0   | n/a         | n/a           | 0.0,<br>0.0   | 3.1, 3.1      |
| Ciprofloxacin                                |           |               |               |               |               |               |             |               |               |               |
|                                              | n         | 9             | 18            | 19            | 3             | 4             | 3           | 8             | 1             | 65            |
| Acinetobacter<br>baumannii complex           | %I        | n/a           | 0.0,<br>94.4  | 0.0,<br>94.7  | n/a           | n/a           | n/a         | n/a           | n/a           | 0.0, 95.4     |
|                                              | %R        | n/a           | 5.6,<br>5.6   | 5.3,<br>5.3   | n/a           | n/a           | n/a         | n/a           | n/a           | 4.6, 4.6      |
|                                              | n         | 170           | 98            | 88            | 22            | 51            | 19          | 9             | 18            | 475           |
| <i>Enterobacter cloacae</i> complex          | %I        | 1.2,<br>1.2   | 1.0,<br>1.0   | 2.3,<br>2.3   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0 | n/a           | 0.0,<br>0.0   | 1.1, 1.1      |
| ·                                            | %R        | 6.5,<br>6.5   | 5.1,<br>5.1   | 4.5,<br>4.5   | 9.1,<br>9.1   | 0.0,<br>0.0   | 0.0,<br>0.0 | n/a           | 5.6,<br>5.6   | 5.3, 5.3      |
|                                              | n         | 1,770         | 1,053         | 711           | 439           | 695           | 231         | 170           | 190           | 5,259         |
| Escherichia coli                             | %I        | 4.1,<br>4.1   | 3.0,<br>3.0   | 4.4,<br>4.4   | 4.8,<br>4.8   | 2.6,<br>2.6   | 1.3,<br>1.3 | 9.4,<br>9.4   | 1.6,<br>1.6   | 3.7, 3.7      |
|                                              | %R        | 16.4,<br>16.4 | 13.1,<br>13.1 | 10.0,<br>10.0 | 14.6,<br>14.6 | 14.0,<br>14.0 | 6.9,<br>6.9 | 15.3,<br>15.3 | 10.0,<br>10.0 | 13.7,<br>13.7 |
|                                              | n         | 39            | 29            | 15            | 13            | 18            | 7           | 3             | 5             | 129           |
| Klebsiella aerogenes                         | %I        | 0.0,<br>0.0   | 3.4,<br>3.4   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a         | n/a           | n/a           | 0.8, 0.8      |
|                                              | %R        | 5.1,<br>5.1   | 0.0,<br>0.0   | 6.7,<br>6.7   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a         | n/a           | n/a           | 3.1, 3.1      |
|                                              | n         | 87            | 78            | 30            | 28            | 43            | 16          | 5             | 10            | 297           |
| Klebsiella oxytoca                           | %I        | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 2.3,<br>2.3   | 0.0,<br>0.0 | n/a           | 0.0,<br>0.0   | 0.3, 0.3      |
|                                              | %R        | 1.1,<br>1.1   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 2.3,<br>2.3   | 0.0,<br>0.0 | n/a           | 0.0,<br>0.0   | 0.7, 0.7      |
|                                              | n         | 443           | 282           | 227           | 83            | 212           | 50          | 52            | 42            | 1,391         |
| Klebsiella<br>pneumoniae complex             | %I        | 2.9,<br>2.9   | 1.1,<br>1.1   | 0.9,<br>0.9   | 2.4,<br>2.4   | 1.9,<br>1.9   | 2.0,<br>2.0 | 5.8,<br>5.8   | 2.4,<br>2.4   | 2.1, 2.1      |
|                                              | %R        | 8.4,<br>8.4   | 7.4,<br>7.4   | 5.7,<br>5.7   | 2.4,<br>2.4   | 8.5,<br>8.5   | 8.0,<br>8.0 | 17.3,<br>17.3 | 11.9,<br>11.9 | 7.8, 7.8      |

| Antimicrobial agent                                 | Cotogramut | CL            | SI and E                | UCAST p      | percenta      | ge susc                | eptibili      | ty at indi    | icated c      | ategory       |
|-----------------------------------------------------|------------|---------------|-------------------------|--------------|---------------|------------------------|---------------|---------------|---------------|---------------|
| and species                                         | Category*  | NSW           | Vic                     | Qld          | SA            | WA                     | Tas           | NT            | ACT           | Australia     |
|                                                     | n          | 113           | 69                      | 43           | 31            | 48                     | 9             | 4             | 6             | 323           |
| Proteus mirabilis                                   | %I         | 0.9,<br>0.9   | 1.4,<br>1.4             | 0.0,<br>0.0  | 0.0,<br>0.0   | 0.0,<br>0.0            | n/a           | n/a           | n/a           | 0.6, 0.6      |
|                                                     | %R         | 6.2,<br>6.2   | 2.9,<br>2.9             | 0.0,<br>0.0  | 6.5,<br>6.5   | 4.2,<br>4.2            | n/a           | n/a           | n/a           | 4.0, 4.0      |
|                                                     | n          | 271           | 146                     | 152          | 76            | 113                    | 35            | 13            | 30            | 836           |
| Pseudomonas<br>aeruginosa                           | %I         | 6.6,<br>88.6  | 9.6,<br>87.0            | 6.6,<br>89.5 | 3.9,<br>88.2  | 2.7,<br>95.6           | 0.0,<br>94.3  | 0.0,<br>92.3  | 0.0,<br>96.7  | 5.7, 90.0     |
| 0                                                   | %R         | 4.8,<br>11.4  | 3.4,<br>13.0            | 3.9,<br>10.5 | 7.9,<br>11.8  | 1.8,<br>4.4            | 5.7,<br>5.7   | 7.7,<br>7.7   | 3.3,<br>3.3   | 4.3, 10.0     |
|                                                     | n          | 21            | 16                      | 17           | 0             | 18                     | 12            | 10            | 3             | 97            |
| Salmonella species<br>(non-typhoidal) <sup>**</sup> | %I         | 4.8, –<br>#   | 6.3, –<br>#             | 0.0, -       | n/a           | 5.6,<br>_ <sup>#</sup> | 0.0,<br>_#    | 0.0, -        | n/a           | 3.1, –#       |
|                                                     | %R         | 14.3,<br>19.0 | 25.0,<br>31.3           | 0.0,<br>0.0  | n/a           | 5.6,<br>11.1           | 0.0,<br>0.0   | 10.0,<br>10.0 | n/a           | 10.3,<br>13.4 |
|                                                     | n          | 9             | 16                      | 2            | 1             | 5                      | 1             | 1             | 3             | 38            |
| Salmonella species (typhoidal)**                    | %I         | n/a           | 18.8,<br>_ <sup>#</sup> | n/a          | n/a           | n/a                    | n/a           | n/a           | n/a           | 18.4, –#      |
|                                                     | %R         | n/a           | 56.3,<br>75.0           | n/a          | n/a           | n/a                    | n/a           | n/a           | n/a           | 65.8,<br>84.2 |
|                                                     | n          | 105           | 52                      | 36           | 7             | 35                     | 8             | 4             | 10            | 257           |
| Serratia marcescens                                 | %I         | 1.0,<br>1.0   | 5.8,<br>5.8             | 0.0,<br>0.0  | n/a           | 0.0,<br>0.0            | n/a           | n/a           | 0.0,<br>0.0   | 1.6, 1.6      |
|                                                     | %R         | 2.9,<br>2.9   | 3.8,<br>3.8             | 0.0,<br>0.0  | n/a           | 2.9,<br>2.9            | n/a           | n/a           | 0.0,<br>0.0   | 2.3, 2.3      |
| Gentamicin                                          |            |               |                         |              |               |                        |               |               |               |               |
| Acinetobacter                                       | n          | 9             | 18                      | 21           | 3             | 4                      | 3             | 8             | 1             | 67            |
| baumannii complex                                   | %R         | n/a           | 0.0,<br>0.0             | 4.8,<br>4.8  | n/a           | n/a                    | n/a           | n/a           | n/a           | 3.0, 3.0      |
| Enterobacter cloacae                                | n          | 168           | 98                      | 88           | 22            | 51                     | 19            | 9             | 18            | 473           |
| complex                                             | %R         | 7.7,<br>7.7   | 4.1,<br>5.1             | 4.5,<br>5.7  | 4.5,<br>4.5   | 0.0,<br>2.0            | 15.8,<br>15.8 | n/a           | 0.0,<br>0.0   | 5.5, 6.1      |
|                                                     | n          | 1,769         | 1,054                   | 711          | 439           | 695                    | 231           | 170           | 190           | 5,259         |
| Escherichia coli                                    | %R         | 8.3,<br>8.8   | 6.1,<br>6.4             | 6.6,<br>7.0  | 10.7,<br>11.4 | 8.1,<br>8.5            | 3.0,<br>3.9   | 20.0,<br>20.0 | 6.8,<br>6.8   | 7.9, 8.3      |
| Klebsiella aerogenes                                | n          | 39            | 29                      | 15           | 13            | 18                     | 7             | 3             | 5             | 129           |
| Nebsiella aelogenes                                 | %R         | 0.0,<br>0.0   | 0.0,<br>0.0             | 0.0,<br>0.0  | 0.0,<br>0.0   | 0.0,<br>0.0            | n/a           | n/a           | n/a           | 2.3, 2.3      |
|                                                     | n          | 87            | 78                      | 30           | 28            | 43                     | 16            | 5             | 10            | 297           |
| Klebsiella oxytoca                                  | %R         | 0.0,<br>0.0   | 0.0,<br>0.0             | 0.0,<br>0.0  | 0.0,<br>0.0   | 0.0,<br>0.0            | 0.0,<br>0.0   | n/a           | 10.0,<br>10.0 | 1.0, 1.0      |
| Klebsiella                                          | n          | 444           | 282                     | 227          | 83            | 212                    | 50            | 52            | 42            | 1,392         |
| pneumoniae complex                                  | %R         | 3.6,<br>4.5   | 3.2,<br>3.2             | 2.2,<br>2.2  | 1.2,<br>1.2   | 1.4,<br>1.9            | 0.0,<br>0.0   | 7.7,<br>7.7   | 9.5,<br>9.5   | 3.0, 3.4      |
|                                                     | n          | 113           | 69                      | 43           | 31            | 48                     | 9             | 4             | 6             | 323           |
| Proteus mirabilis                                   | %R         | 1.8,<br>7.1   | 1.4,<br>2.9             | 0.0,<br>4.7  | 6.5,<br>6.5   | 2.1,<br>4.2            | n/a           | n/a           | n/a           | 1.9, 5.0      |
|                                                     | n          | 105           | 52                      | 36           | 7             | 35                     | 8             | 4             | 10            | 257           |
| Serratia marcescens                                 | %R         | 2.9,<br>2.9   | 0.0,<br>1.9             | 0.0,<br>0.0  | n/a           | 0.0,<br>0.0            | n/a           | n/a           | 20.0,<br>20.0 | 1.9, 2.3      |
| Meropenem                                           |            |               |                         |              |               |                        |               |               |               |               |
| Acinetobacter                                       | n          | 9             | 18<br>0.0,              | 21<br>0.0,   | 3             | 4                      | 3             | 8             | 1             | 67            |
| baumannii complex                                   | %I         | n/a           | 0.0                     | 0.0          | n/a           | n/a                    | n/a           | n/a           | n/a           | 0.0, 0.0      |

| Antimicrobial agent                          | Cotomenut | CLS         | SI and El   |             | percenta    | ge susc     | eptibilit   | ty at ind   | icated ca   | ategory   |
|----------------------------------------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------|
| and species                                  | Category* | NSW         | Vic         | Qld         | SA          | WA          | Tas         | NT          | ACT         | Australia |
|                                              | %R        | n/a         | 0.0,<br>0.0 | 4.8,<br>4.8 | n/a         | n/a         | n/a         | n/a         | n/a         | 3.0, 3.0  |
|                                              | n         | 170         | 98          | 88          | 22          | 51          | 19          | 9           | 18          | 475       |
| Enterobacter cloacae complex                 | %I        | 0.0,<br>1.2 | 1.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | n/a         | 0.0,<br>0.0 | 0.2, 0.4  |
|                                              | %R        | 5.3,<br>4.1 | 1.0,<br>1.0 | 2.3,<br>2.3 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | n/a         | 0.0,<br>0.0 | 2.5, 2.1  |
|                                              | n         | 1,771       | 1,053       | 711         | 439         | 695         | 231         | 170         | 190         | 5,260     |
| Escherichia coli                             | %I        | 0.1,<br>0.1 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.5 | 0.0, 0.1  |
|                                              | %R        | 0.2,<br>0.1 | 0.1,<br>0.1 | 0.0,<br>0.0 | 0.2,<br>0.2 | 0.1,<br>0.1 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.5,<br>0.0 | 0.1, 0.1  |
|                                              | n         | 39          | 29          | 15          | 13          | 18          | 7           | 3           | 5           | 129       |
| Klebsiella aerogenes                         | %I        | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | n/a         | n/a         | n/a         | 0.0, 1.6  |
|                                              | %R        | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 7.7,<br>7.7 | 0.0,<br>0.0 | n/a         | n/a         | n/a         | 2.3, 0.8  |
|                                              | n         | 85          | 78          | 30          | 28          | 43          | 16          | 5           | 10          | 295       |
| Klebsiella oxytoca                           | %I        | 0.0,<br>1.2 | 0.0,<br>1.3 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | n/a         | 0.0,<br>0.0 | 0.0, 0.7  |
|                                              | %R        | 1.2,<br>0.0 | 1.3,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | n/a         | 0.0,<br>0.0 | 0.7, 0.0  |
|                                              | n         | 444         | 282         | 227         | 83          | 212         | 50          | 52          | 42          | 1,392     |
| <i>Klebsiella<br/>pneumoniae</i> complex     | %I        | 0.2,<br>0.0 | 0.4,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.5,<br>0.0 | 0.0,<br>2.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.2, 0.1  |
|                                              | %R        | 0.5,<br>0.5 | 0.7,<br>0.7 | 0.4,<br>0.4 | 0.0,<br>0.0 | 0.0,<br>0.0 | 2.0,<br>0.0 | 1.9,<br>1.9 | 2.4,<br>2.4 | 0.6, 0.5  |
|                                              | n         | 113         | 69          | 43          | 31          | 48          | 9           | 4           | 6           | 323       |
| Proteus mirabilis                            | %I        | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | n/a         | n/a         | n/a         | 0.0, 0.0  |
|                                              | %R        | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | n/a         | n/a         | n/a         | 0.0, 0.0  |
|                                              | n         | 270         | 146         | 153         | 76          | 113         | 35          | 13          | 30          | 836       |
| Pseudomonas<br>aeruginosa                    | %I        | 4.4,<br>6.7 | 3.4,<br>4.8 | 5.9,<br>6.5 | 6.6,<br>9.2 | 4.4,<br>6.2 | 0.0,<br>0.0 | 7.7,<br>7.7 | 3.3,<br>3.3 | 4.5, 6.1  |
|                                              | %R        | 6.3,<br>4.1 | 8.9,<br>7.5 | 3.9,<br>3.3 | 7.9,<br>5.3 | 4.4,<br>2.7 | 5.7,<br>5.7 | 0.0,<br>0.0 | 0.0,<br>0.0 | 5.9, 4.3  |
|                                              | n         | 21          | 16          | 16          | 0           | 18          | 12          | 10          | 3           | 96        |
| <i>Salmonella</i> species<br>(non-typhoidal) | %I        | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | n/a         | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | n/a         | 0.0, 0.0  |
|                                              | %R        | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | n/a         | 0.0,<br>0.0 | 0.0,<br>0.0 | 0.0,<br>0.0 | n/a         | 0.0, 0.0  |
|                                              | n         | 9           | 15          | 2           | 1           | 5           | 1           | 1           | 3           | 37        |
| Salmonella species<br>(typhoidal)            | %I        | n/a         | 0.0,<br>0.0 | n/a         | n/a         | n/a         | n/a         | n/a         | n/a         | 0.0, 0.0  |
| · · · ·                                      | %R        | n/a         | 0.0,<br>0.0 | n/a         | n/a         | n/a         | n/a         | n/a         | n/a         | 0.0, 0.0  |
|                                              | n         | 105         | 52          | 36          | 7           | 35          | 8           | 4           | 10          | 257       |
| Serratia marcescens                          | %I        | 0.0,<br>0.0 | 0.0,<br>1.9 | 0.0,<br>0.0 | n/a         | 0.0,<br>0.0 | n/a         | n/a         | 0.0,<br>0.0 | 0.0, 0.8  |
|                                              | %R        | 1.0,<br>1.0 | 3.8,<br>1.9 | 0.0,<br>0.0 | n/a         | 0.0,<br>0.0 | n/a         | n/a         | 0.0,<br>0.0 | 1.6, 0.8  |
| Nitrofurantoin                               |           | 4.40        |             | 00          | 00          | - /         | 10          |             | 4.6         | 400       |
| Enterobacter cloacae                         | n         | 148         | 55          | 80          | 22          | 51          | 19          | 9           | 18          | 402       |

| Antimicrobial agent         | Category* | CLS           | SI and E      | UCAST p       | percenta      | ige susc      | eptibili      | ty at ind    | icated ca     | ategory              |
|-----------------------------|-----------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|---------------|----------------------|
| and species                 | Category" | NSW           | Vic           | Qld           | SA            | WA            | Tas           | NT           | ACT           | Australia            |
| complex                     | %R        | 14.2,<br>_§   | 3.6, –<br>§   | 11.3,<br>_§   | 9.1, –<br>§   | 13.7,<br>_§   | 10.5,<br>_§   | n/a          | 5.6, –<br>§   | 11.4, – <sup>§</sup> |
|                             | n         | 1,771         | 1,053         | 653           | 439           | 695           | 231           | 170          | 190           | 5,202                |
| Escherichia coli            | %R        | 0.8,<br>0.8   | 0.4,<br>0.4   | 0.5,<br>0.5   | 0.5,<br>0.5   | 0.0,<br>0.0   | 0.0,<br>0.0   | 1.2,<br>1.2  | 1.1,<br>1.1   | 0.5, 0.5             |
|                             | n         | 33            | 20            | 15            | 13            | 18            | 7             | 3            | 5             | 114                  |
| Klebsiella aerogenes        | %R        | 33.3,<br>_§   | 45.0,<br>_§   | 20.0,<br>_§   | 38.5,<br>_§   | 33.3,<br>_§   | n/a           | n/a          | n/a           | 35.1, – <sup>§</sup> |
|                             | n         | 76            | 50            | 27            | 28            | 43            | 16            | 5            | 10            | 255                  |
| Klebsiella oxytoca          | %R        | 2.6, –<br>§   | 0.0, –<br>§   | 3.7, –<br>§   | 3.6, –<br>§   | 0.0,<br>_§    | 0.0,<br>_§    | n/a          | 0.0, –<br>§   | 1.6, —§              |
| Klebsiella                  | n         | 392           | 171           | 210           | 83            | 212           | 50            | 52           | 42            | 1,212                |
| pneumoniae complex          | %R        | 23.2,<br>_§   | 31.0,<br>_§   | 26.2,<br>_§   | 22.9,<br>_§   | 37.7,<br>_§   | 20.0,<br>_§   | 34.6,<br>_§  | 19.0,<br>_§   | 27.6, –§             |
|                             | n         | 96            | 61            | 42            | 31            | 48            | 9             | 4            | 0             | 291                  |
| Proteus mirabilis           | %R        | 83.3,<br>_§   | 91.8,<br>_§   | 95.2,<br>_§   | 80.6,<br>_§   | 89.6,<br>_§   | n/a           | n/a          | n/a           | 87.6, –§             |
| Salmonella species          | n         | 14            | 10            | 15            | 0             | 18            | 12            | 10           | 1             | 80                   |
| (non-typhoidal)             | %R        | 0.0, –<br>§   | 20.0,<br>_§   | 0.0, –<br>§   | n/a           | 0.0,<br>_§    | 0.0,<br>_§    | 0.0, –<br>§  | n/a           | 2.5, – <sup>§</sup>  |
| Salmonella species          | n         | 8             | 13            | 2             | 1             | 5             | 1             | 1            | 0             | 31                   |
| (typhoidal)                 | %R        | n/a           | 0.0, –<br>§   | n/a           | n/a           | n/a           | n/a           | n/a          | n/a           | 0.0, -§              |
|                             | n         | 80            | 42            | 34            | 7             | 35            | 8             | 4            | 10            | 220                  |
| Serratia marcescens         | %R        | 100.0,<br>_§  | 97.6,<br>_§   | 100.0,<br>_§  | n/a           | 94.3,<br>_§   | n/a           | n/a          | 90.0,<br>_§   | 98.2, – <sup>§</sup> |
| Piperacillin–<br>tazobactam |           |               |               |               |               |               |               |              |               |                      |
| Acinetobacter               | n         | 9             | 13            | 20            | 3             | 4             | 1             | 8            | 1             | 59                   |
| baumannii complex           | %R        | n/a           | 7.7, –<br>§   | 15.0,<br>_§   | n/a           | n/a           | n/a           | n/a          | n/a           | 10.2, — <sup>§</sup> |
| Enterobacter cloacae        | n         | 170           | 97            | 86            | 22            | 51            | 17            | 9            | 18            | 470                  |
| complex                     | %R        | 22.4,<br>33.5 | 18.6,<br>24.7 | 14.0,<br>24.4 | 36.4,<br>45.5 | 5.9,<br>9.8   | 17.6,<br>17.6 | n/a          | 5.6,<br>16.7  | 18.3,<br>27.2        |
|                             | n         | 1,765         | 1,051         | 707           | 437           | 693           | 231           | 169          | 190           | 5,243                |
| Escherichia coli            | %R        | 3.7,<br>6.9   | 2.2,<br>5.0   | 2.5,<br>5.7   | 1.6,<br>3.9   | 3.2,<br>7.2   | 1.7,<br>3.9   | 1.8,<br>6.5  | 2.6,<br>4.2   | 2.8, 5.9             |
|                             | n         | 39            | 29            | 15            | 13            | 18            | 7             | 3            | 5             | 129                  |
| Klebsiella aerogenes        | %R        | 23.1,<br>41.0 | 24.1,<br>37.9 | 6.7,<br>13.3  | 23.1,<br>46.2 | 11.1,<br>22.2 | n/a           | n/a          | n/a           | 20.9,<br>37.2        |
|                             | n         | 85            | 78            | 30            | 28            | 43            | 16            | 5            | 10            | 295                  |
| Klebsiella oxytoca          | %R        | 10.6,<br>10.6 | 10.3,<br>15.4 | 0.0,<br>3.3   | 0.0,<br>7.1   | 7.0,<br>9.3   | 18.8,<br>25.0 | n/a          | 10.0,<br>10.0 | 8.1, 11.5            |
| Klebsiella                  | n         | 442           | 282           | 225           | 82            | 212           | 50            | 51           | 42            | 1,386                |
| pneumoniae complex          | %R        | 4.3,<br>10.2  | 2.8,<br>8.2   | 2.7,<br>8.0   | 2.4,<br>4.9   | 1.9,<br>8.5   | 0.0,<br>2.0   | 0.0,<br>17.6 | 2.4,<br>7.1   | 2.9, 8.7             |
|                             | n         | 113           | 69            | 42            | 31            | 48            | 9             | 4            | 6             | 322                  |
| Proteus mirabilis           | %R        | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | n/a          | n/a           | 0.0, 0.0             |
| Pseudomonas                 | n         | 269           | 146           | 153           | 76            | 111           | 34            | 13           | 30            | 832                  |
| aeruginosa                  | %R        | 5.2,<br>14.1  | 9.6,<br>21.9  | 5.2,<br>12.4  | 10.5,<br>19.7 | 0.9,<br>7.2   | 11.8,<br>20.6 | 7.7,<br>7.7  | 3.3,<br>6.7   | 6.1, 14.7            |
| Salmonella species          | n         | 21            | 16            | 16            | 0             | 18            | 12            | 10           | 3             | 96                   |

| Antimicrobial agent            | Catagenut | CLS           | SI and E      |               | percenta      | ge suso       | eptibilit     | y at ind      | icated ca     | ategory       |
|--------------------------------|-----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| and species                    | Category* | NSW           | Vic           | Qld           | SA            | WA            | Tas           | NT            | ACT           | Australia     |
| (non-typhoidal)                | %R        | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | 0.0, 0.0      |
| Salmonella species             | n         | 9             | 15            | 2             | 1             | 5             | 1             | 1             | 3             | 37            |
| (typhoidal)                    | %R        | n/a           | 0.0,<br>0.0   | n/a           | n/a           | n/a           | n/a           | n/a           | n/a           | 0.0, 2.7      |
|                                | n         | 95            | 52            | 36            | 7             | 4             | 8             | 0             | 10            | 212           |
| Serratia marcescens            | %R        | 0.0,<br>0.0   | 0.0,<br>1.9   | 0.0,<br>0.0   | n/a           | n/a           | n/a           | n/a           | 0.0,<br>0.0   | 0.0, 0.9      |
| Ticarcillin–clavulanic<br>acid |           |               |               |               |               |               |               |               |               |               |
| Acinetobacter                  | n         | 5             | 4             | 21            | 2             | 4             | 1             | 8             | 1             | 46            |
| baumannii complex              | %R        | n/a           | n/a           | 4.8, –<br>§   | n/a           | n/a           | n/a           | n/a           | n/a           | 4.3, –§       |
| Enterobacter cloacae           | n         | 113           | 98            | 80            | 18            | 51            | 19            | 9             | 18            | 406           |
| complex                        | %R        | 33.6,<br>38.1 | 23.5,<br>28.6 | 20.0,<br>21.3 | 44.4,<br>55.6 | 5.9,<br>9.8   | 26.3,<br>31.6 | n/a           | 5.6,<br>16.7  | 23.9,<br>28.6 |
|                                | n         | 1,219         | 1,053         | 652           | 174           | 695           | 231           | 170           | 190           | 4,384         |
| Escherichia coli               | %R        | 7.1,<br>14.3  | 4.3,<br>10.0  | 3.7,<br>10.9  | 4.6,<br>13.8  | 6.9,<br>12.8  | 5.6,<br>8.2   | 5.9,<br>14.1  | 4.2,<br>10.0  | 5.5, 12.0     |
|                                | n         | 30            | 29            | 15            | 9             | 18            | 7             | 3             | 5             | 116           |
| Klebsiella aerogenes           | %R        | 16.7,<br>33.3 | 20.7,<br>34.5 | 6.7,<br>13.3  | n/a           | 11.1,<br>16.7 | n/a           | n/a           | n/a           | 20.7,<br>32.8 |
|                                | n         | 58            | 78            | 27            | 13            | 43            | 16            | 5             | 10            | 250           |
| Klebsiella oxytoca             | %R        | 6.9,<br>10.3  | 7.7,<br>11.5  | 0.0,<br>3.7   | 7.7,<br>7.7   | 7.0,<br>7.0   | 18.8,<br>18.8 | n/a           | 10.0,<br>10.0 | 7.2, 10.0     |
| Klebsiella                     | n         | 298           | 282           | 210           | 34            | 212           | 50            | 52            | 42            | 1,180         |
| pneumoniae complex             | %R        | 4.7,<br>9.1   | 4.3,<br>6.4   | 2.9,<br>4.3   | 2.9,<br>5.9   | 2.4,<br>4.7   | 0.0,<br>4.0   | 3.8,<br>15.4  | 7.1,<br>9.5   | 3.6, 6.8      |
|                                | n         | 70            | 69            | 42            | 14            | 48            | 9             | 4             | 6             | 262           |
| Proteus mirabilis              | %R        | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | n/a           | n/a           | 0.0, 0.0      |
| Pseudomonas                    | n         | 184           | 146           | 133           | 26            | 113           | 35            | 13            | 30            | 680           |
| aeruginosa                     | %R        | 15.2,<br>40.2 | 23.3,<br>51.4 | 12.0,<br>37.6 | 26.9,<br>46.2 | 9.7,<br>37.2  | 14.3,<br>62.9 | 15.4,<br>30.8 | 3.3,<br>33.3  | 15.3,<br>42.5 |
| Salmonella species             | n         | 13            | 16            | 15            | 0             | 18            | 12            | 10            | 3             | 87            |
| (non-typhoidal)                | %R        | 0.0,<br>0.0   | 0.0,<br>6.3   | 0.0,<br>0.0   | n/a           | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | 0.0, 1.1      |
| Salmonella species             | n         | 5             | 15            | 2             | 1             | 5             | 1             | 1             | 3             | 33            |
| (typhoidal)                    | %R        | n/a           | 0.0,<br>0.0   | n/a           | n/a           | n/a           | n/a           | n/a           | n/a           | 3.0, 15.2     |
|                                | n         | 55            | 32            | 34            | 1             | 35            | 8             | 4             | 10            | 179           |
| Serratia marcescens            | %R        | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | 0.0,<br>2.9   | n/a           | n/a           | 0.0,<br>0.0   | 0.0, 1.1      |
| Tobramycin                     |           |               |               |               |               |               |               |               |               |               |
| Acinetobacter                  | n         | 8             | 18            | 21            | 3             | 4             | 3             | 8             | 1             | 66            |
| baumannii complex              | %R        | n/a           | 0.0,<br>0.0   | 4.8,<br>4.8   | n/a           | n/a           | n/a           | n/a           | n/a           | 3.0, 3.0      |
| Enterobacter cloacae           | n         | 160           | 98            | 88            | 22            | 51            | 19            | 9             | 18            | 465           |
| complex                        | %R        | 4.4,<br>9.4   | 3.1,<br>5.1   | 2.3,<br>5.7   | 4.5,<br>4.5   | 0.0,<br>2.0   | 15.8,<br>15.8 | n/a           | 0.0,<br>0.0   | 3.7, 6.7      |
|                                | n         | 1,744         | 1,054         | 710           | 439           | 695           | 231           | 170           | 190           | 5,233         |
| Escherichia coli               | %R        | 2.4,<br>8.9   | 1.9,<br>6.5   | 2.3,<br>7.3   | 4.1,<br>12.1  | 2.4,<br>8.5   | 0.4,<br>3.5   | 4.7,<br>22.9  | 2.6,<br>7.4   | 2.4, 8.6      |
|                                |           |               |               |               |               |               |               |               |               |               |

| Antimicrobial agent               | <b>C</b> -4 | CLS           | SI and E      |               | percenta      | ge susc       | eptibilit     | y at ind      | icated ca     | ategory       |
|-----------------------------------|-------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| and species                       | Category*   | NSW           | Vic           | Qld           | SA            | WA            | Tas           | NT            | ACT           | Australia     |
|                                   | n           | 39            | 29            | 15            | 13            | 18            | 7             | 3             | 5             | 129           |
| Klebsiella aerogenes              | %R          | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | n/a           | n/a           | 0.0, 2.3      |
|                                   | n           | 86            | 78            | 30            | 28            | 43            | 16            | 5             | 10            | 296           |
| Klebsiella oxytoca                | %R          | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | 0.0,<br>10.0  | 0.0, 1.0      |
| Klebsiella                        | n           | 436           | 282           | 227           | 83            | 211           | 50            | 52            | 42            | 1,383         |
| pneumoniae complex                | %R          | 2.3,<br>4.8   | 1.8,<br>3.5   | 1.3,<br>2.2   | 0.0,<br>2.4   | 0.5,<br>2.8   | 0.0,<br>2.0   | 1.9,<br>13.5  | 0.0,<br>11.9  | 1.4, 4.1      |
|                                   | n           | 113           | 69            | 43            | 31            | 48            | 9             | 4             | 6             | 323           |
| Proteus mirabilis                 | %R          | 2.7,<br>4.4   | 2.9,<br>2.9   | 0.0,<br>2.3   | 0.0,<br>6.5   | 2.1,<br>4.2   | n/a           | n/a           | n/a           | 1.9, 3.7      |
| Pseudomonas                       | n           | 260           | 146           | 154           | 76            | 113           | 35            | 13            | 30            | 827           |
| aeruginosa                        | %R          | 0.4,<br>0.8   | 0.0,<br>0.0   | 0.0,<br>1.3   | 0.0,<br>0.0   | 1.8,<br>1.8   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.0,<br>0.0   | 0.4, 0.7      |
|                                   | n           | 103           | 52            | 36            | 7             | 35            | 8             | 4             | 10            | 255           |
| Serratia marcescens               | %R          | 1.0,<br>35.0  | 0.0,<br>36.5  | 0.0,<br>19.4  | n/a           | 0.0,<br>34.3  | n/a           | n/a           | 20.0,<br>20.0 | 1.2, 31.4     |
| Trimethoprim                      |             |               |               |               |               |               |               |               |               |               |
| Enterobacter cloacae              | n           | 170           | 98            | 80            | 22            | 51            | 19<br>15 0    | 9             | 18            | 467           |
| complex                           | %R          | 23.5,<br>23.5 | 15.3,<br>15.3 | 21.3,<br>22.5 | 9.1,<br>9.1   | 13.7,<br>13.7 | 15.8,<br>15.8 | n/a           | 16.7,<br>16.7 | 19.1,<br>19.3 |
| Escherichia coli                  | n           | 1,771         | 1,054         | 653           | 439           | 694           | 231           | 170           | 190           | 5,202         |
| Eschencina con                    | %R          | 30.3,<br>30.5 | 27.5,<br>27.6 | 30.3,<br>30.6 | 31.0,<br>31.0 | 35.0,<br>35.0 | 16.9,<br>16.9 | 55.9,<br>55.9 | 21.1,<br>21.1 | 30.3,<br>30.4 |
|                                   | n           | 39            | 29            | 15            | 13            | 18            | 7             | 3             | 4             | 128           |
| Klebsiella aerogenes              | %R          | 0.0,<br>0.0   | 3.4,<br>3.4   | 13.3,<br>13.3 | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | n/a           | n/a           | 3.1, 3.1      |
| Klabajalla avutana                | n           | 86            | 78            | 27            | 28            | 43            | 16            | 5             | 10            | 293           |
| Klebsiella oxytoca                | %R          | 8.1,<br>9.3   | 3.8,<br>3.8   | 11.1,<br>11.1 | 3.6,<br>3.6   | 4.7,<br>4.7   | 6.3,<br>6.3   | n/a           | 0.0,<br>0.0   | 6.8, 7.2      |
| Klebsiella                        | n           | 444           | 282           | 210           | 83            | 212           | 50            | 52            | 42            | 1,375         |
| pneumoniae complex                | %R          | 16.9,<br>17.8 | 13.5,<br>14.5 | 15.2,<br>16.2 | 13.3,<br>14.5 | 11.3,<br>11.3 | 10.0,<br>10.0 | 28.8,<br>28.8 | 14.3,<br>14.3 | 15.0,<br>15.7 |
|                                   | n           | 113           | 69            | 42            | 31            | 48            | 9             | 4             | 6             | 322           |
| Proteus mirabilis                 | %R          | 19.5,<br>20.4 | 21.7,<br>21.7 | 14.3,<br>14.3 | 22.6,<br>22.6 | 12.5,<br>12.5 | n/a           | n/a           | n/a           | 18.6,<br>18.9 |
| Salmonella species                | n           | 21            | 16            | 15            | 0             | 18            | 12            | 10            | 3             | 95            |
| (non-typhoidal)                   | %R          | 4.8,<br>4.8   | 6.3,<br>6.3   | 0.0,<br>0.0   | n/a           | 5.6,<br>5.6   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | 3.2, 3.2      |
| Salmonella species                | n           | 9             | 15            | 2             | 1             | 5             | 1             | 1             | 3             | 37            |
| (typhoidal)                       | %R          | n/a           | 0.0,<br>0.0   | n/a           | n/a           | n/a           | n/a           | n/a           | n/a           | 18.9,<br>18.9 |
| <b>0</b> - 1                      | n           | 105           | 52            | 34            | 7             | 35            | 8             | 4             | 10            | 255           |
| Serratia marcescens               | %R          | 2.9,<br>2.9   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | 2.9,<br>2.9   | n/a           | n/a           | 0.0,<br>0.0   | 1.6, 1.6      |
| Trimethoprim–<br>sulfamethoxazole |             |               |               |               |               |               |               |               |               |               |
| Acinetobacter                     | n           | 9             | 18            | 21            | 3             | 4             | 3             | 8             | 1             | 67            |
| baumannii complex                 | %R          | n/a           | 0.0,<br>0.0   | 4.8,<br>4.8   | n/a           | n/a           | n/a           | n/a           | n/a           | 4.5, 4.5      |
| Enterobacter cloacae              | n<br>% P    | 170           | 97            | 88            | 22            | 51            | 19<br>10 5    | 9             | 16            | 472           |
| complex                           | %R          | 21.8,         | 14.4,         | 21.6,         | 9.1,          | 7.8,          | 10.5,         | n/a           | 18.8,         | 17.6,         |

| Antimicrobial agent  | Cotomoret | CLS           | SI and E      |               | percenta      | ge susc       | eptibili      | ty at ind     | icated c      | ategory       |
|----------------------|-----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| and species          | Category* | NSW           | Vic           | Qld           | SA            | WA            | Tas           | NT            | ACT           | Australia     |
|                      |           | 21.8          | 14.4          | 22.7          | 9.1           | 7.8           | 10.5          |               | 18.8          | 17.8          |
|                      | n         | 1,771         | 1,053         | 711           | 437           | 695           | 231           | 170           | 190           | 5,258         |
| Escherichia coli     | %R        | 28.1,<br>28.0 | 25.4,<br>25.1 | 27.8,<br>27.8 | 27.5,<br>27.0 | 32.5,<br>32.5 | 14.3,<br>14.3 | 55.3,<br>55.3 | 19.5,<br>19.5 | 28.0,<br>27.9 |
|                      | n         | 39            | 29            | 15            | 13            | 18            | 7             | 3             | 5             | 129           |
| Klebsiella aerogenes | %R        | 0.0,<br>0.0   | 3.4,<br>3.4   | 13.3,<br>13.3 | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | n/a           | n/a           | 3.1, 3.1      |
|                      | n         | 87            | 78            | 30            | 28            | 43            | 16            | 5             | 10            | 297           |
| Klebsiella oxytoca   | %R        | 8.0,<br>8.0   | 3.8,<br>3.8   | 6.7,<br>6.7   | 3.6,<br>3.6   | 4.7,<br>4.7   | 6.3,<br>6.3   | n/a           | 0.0,<br>0.0   | 6.4, 6.4      |
| Klebsiella           | n         | 444           | 282           | 227           | 83            | 212           | 50            | 52            | 42            | 1,392         |
| pneumoniae complex   | %R        | 15.8,<br>15.5 | 10.3,<br>10.3 | 15.4,<br>15.4 | 9.6,<br>9.6   | 8.5,<br>8.5   | 10.0,<br>10.0 | 25.0,<br>25.0 | 7.1,<br>7.1   | 13.0,<br>12.9 |
|                      | n         | 113           | 69            | 43            | 31            | 48            | 9             | 4             | 6             | 323           |
| Proteus mirabilis    | %R        | 13.3,<br>13.3 | 15.9,<br>15.9 | 9.3,<br>9.3   | 16.1,<br>16.1 | 10.4,<br>10.4 | n/a           | n/a           | n/a           | 13.6,<br>13.6 |
| Salmonella species   | n         | 21            | 16            | 16            | 0             | 18            | 12            | 10            | 3             | 96            |
| (non-typhoidal)      | %R        | 4.8,<br>4.8   | 6.3,<br>6.3   | 0.0,<br>0.0   | n/a           | 5.6,<br>5.6   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | 3.1, 3.1      |
| Salmonella species   | n         | 9             | 15            | 2             | 1             | 5             | 1             | 1             | 3             | 37            |
| (typhoidal)          | %R        | n/a           | 0.0,<br>0.0   | n/a           | n/a           | n/a           | n/a           | n/a           | n/a           | 16.2,<br>16.2 |
|                      | n         | 105           | 52            | 36            | 7             | 35            | 8             | 4             | 10            | 257           |
| Serratia marcescens  | %R        | 2.9,<br>1.9   | 0.0,<br>0.0   | 0.0,<br>0.0   | n/a           | 0.0,<br>0.0   | n/a           | n/a           | 0.0,<br>0.0   | 1.2, 0.8      |

CLSI = Clinical and Laboratory Standards Institute; ECOFF = epidemiological cut-off value; EUCAST = European Committee on Antimicrobial Susceptibility Testing; I = intermediate (CLSI) or susceptible, increased exposure (EUCAST); n/a = insufficient numbers (<10) to calculate; NS = intermediate plus resistant; R = resistant; SDD = sensitive dose dependent (CLSI)

Category analysed for each organism. If different for CLSI and EUCAST, they are separated by a comma.

For susceptibility testing purposes, CLSI uses a 2:1 ratio. EUCAST fixes the concentration of clavulanic acid at 2 mg/L; this formulation is only available specific cards No breakpoints defined for indicated species t

§

# \*\* No category defined

The ciprofloxacin concentration range available on the Vitek® card used restricts the ability to accurately identify susceptible (CLSI/EUCAST) and intermediate (CLSI) categories for *Salmonella* species. Results of MIC strips or a perflocaxin 1 ug disc were applied if available

# Appendix D. Multiple acquired resistance by species and state or territory

The most problematic pathogens are those with multiple acquired resistances. Although there is no agreed benchmark for the definition of multidrug resistance, acquired resistance to one or more agent in three or more antimicrobial categories has been chosen to define multi-drug resistance in this survey.<sup>5</sup> For each species, antimicrobials were excluded from the count if they are affected by natural resistance mechanisms, and/or neither CLSI nor EUCAST breakpoints were available. For this analysis, resistance included intermediate susceptibility, if applicable.

Tables D1–D10 show multiple acquired resistances for different species. Only isolates for which the full range of antimicrobial agents was tested were included for determination of multi-drug resistance. The agents included for each species are listed in the notes after each table. EUCAST breakpoints were used throughout the analysis.

**Table D1:** Multiple acquired resistance in Acinetobacter baumannii complex, by state and territory, AGAR,2022

| State or territory |       |    | Number of<br>(non-multidr | categories<br>ug resistan | t)   | Number of categories<br>(multidrug resistant) |   |     |  |  |
|--------------------|-------|----|---------------------------|---------------------------|------|-----------------------------------------------|---|-----|--|--|
| territory          | Total | 0  | 1                         | 2                         | %    | 3                                             | 4 | %   |  |  |
| NSW                | 9     | 9  | 0                         | 0                         | _*   | 0                                             | 0 | _*  |  |  |
| Vic                | 18    | 17 | 1                         | 0                         | _*   | 0                                             | 0 | _*  |  |  |
| Qld                | 19    | 17 | 1                         | 0                         | _*   | 1                                             | 0 | _*  |  |  |
| SA                 | 3     | 3  | 0                         | 0                         | _*   | 0                                             | 0 | _*  |  |  |
| WA                 | 4     | 3  | 1                         | 0                         | _*   | 0                                             | 0 | _*  |  |  |
| Tas                | 3     | 3  | 0                         | 0                         | _*   | 0                                             | 0 | _*  |  |  |
| NT                 | 8     | 7  | 0                         | 0                         | _*   | 0                                             | 1 | _*  |  |  |
| ACT                | 1     | 1  | 0                         | 0                         | _*   | 0                                             | 0 | _*  |  |  |
| Total              | 65    | 60 | 3                         | 0                         | 96.9 | 1                                             | 1 | 3.1 |  |  |

Multi-drug resistant = resistant to one or more agent in three or more antimicrobial categories

\* Not applicable, insufficient numbers (<30) to calculate

Notes:

1. Antimicrobial categories (agents) are aminoglycosides (gentamicin or tobramycin), carbapenems (meropenem), fluoroquinolones (ciprofloxacin), folate pathway inhibitors (trimethoprim-sulfamethoxazole).

2. Acinetobacter baumannii complex includes A. nosocomialis (n = 6) and A. pittii (n = 5).

| State or  |       |    | umber of<br>n-multidr |   |    |   |   | umber of<br>nultidrug |   |   |    |
|-----------|-------|----|-----------------------|---|----|---|---|-----------------------|---|---|----|
| territory | Total | 0  | 1                     | 2 | %  | 3 | 4 | 5                     | 6 | 7 | %  |
| NSW       | 26    | 22 | 3                     | 1 | _* | 0 | 0 | 0                     | 0 | 0 | _* |
| Vic       | 12    | 11 | 0                     | 0 | _* | 1 | 0 | 0                     | 0 | 0 | _* |
| Qld       | 9     | 8  | 0                     | 1 | _* | 0 | 0 | 0                     | 0 | 0 | _* |
| SA        | 8     | 8  | 0                     | 0 | _* | 0 | 0 | 0                     | 0 | 0 | _* |
| WA        | 14    | 13 | 1                     | 0 | _* | 0 | 0 | 0                     | 0 | 0 | _* |
| Tas       | 4     | 4  | 0                     | 0 | _* | 0 | 0 | 0                     | 0 | 0 | _* |

\_\*

\_\*

98.8

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

\_\*

\_\*

1.3

### Table D2: Multiple acquired resistance in Citrobacter koseri, by state and territory, AGAR, 2022

Multi-drug resistant = resistant to one or more agent in three or more antimicrobial categories

0

0

2

0

0

4

\* Not applicable, insufficient numbers (<30) to calculate

4

3

80

4

3

73

Note: Antimicrobial categories (agents) are aminoglycosides (gentamicin or tobramycin), antipseudomonal penicillins + β-lactamase inhibitor (piperacillin–tazobactam), carbapenems (meropenem), extended-spectrum cephalosporins (ceftriaxone or ceftazidime), cephamycins (cefoxitin), fluoroquinolones (ciprofloxacin), and folate pathway inhibitors (trimethoprim–sulfamethoxazole).

| State or territory |       |    | umber of<br>n- multidr |    | Number of categories<br>(multidrug resistant) |   |   |   |   |     |
|--------------------|-------|----|------------------------|----|-----------------------------------------------|---|---|---|---|-----|
| terntory           | Total | 0  | 1                      | 2  | %                                             | 3 | 4 | 5 | 6 | %   |
| NSW                | 31    | 14 | 2                      | 3  | 61.3                                          | 0 | 0 | 0 | 0 | 0.0 |
| Vic                | 19    | 6  | 1                      | 0  | _*                                            | 0 | 0 | 0 | 0 | _*  |
| Qld                | 7     | 0  | 3                      | 2  | _*                                            | 0 | 0 | 0 | 0 | _*  |
| SA                 | 6     | 16 | 2                      | 2  | _*                                            | 0 | 1 | 0 | 0 | _*  |
| WA                 | 20    | 3  | 0                      | 1  | _*                                            | 0 | 0 | 0 | 0 | _*  |
| Tas                | 4     | 0  | 0                      | 0  | _*                                            | 0 | 0 | 0 | 0 | _*  |
| NT                 | 0     | 3  | 1                      | 1  | n/a                                           | 0 | 0 | 0 | 0 | n/a |
| ACT                | 5     | 71 | 10                     | 10 | _*                                            | 0 | 0 | 0 | 0 | _*  |
| Total              | 92    | 71 | 10                     | 10 | 98.9                                          | 0 | 1 | 0 | 0 | 1.1 |

Multi-drug resistant = resistant to one or more agent in three or more antimicrobial categories; n/a = not applicable (no isolates)

\* Not applicable, insufficient numbers (<30) to calculate

Notes:

NT

ACT

Total

 Antimicrobial categories (agents) are aminoglycosides (gentamicin or tobramycin), antipseudomonal penicillins + β-lactamase inhibitor (piperacillin–tazobactam), carbapenems (meropenem), extended-spectrum cephalosporins (ceftriaxone or ceftazidime), fluoroquinolones (ciprofloxacin), and folate pathway inhibitors (trimethoprim–sulfamethoxazole).

2. Citrobacter freundii complex includes C. braakii (n = 7), C. youngae (n = 2).

| State or territory |       |    |   | categori<br>rug resist |      |   | Number of categories<br>(multidrug resistant) |   |   |     |  |
|--------------------|-------|----|---|------------------------|------|---|-----------------------------------------------|---|---|-----|--|
| terniory           | Total | 0  | 1 | 2                      | %    | 3 | 4                                             | 5 | 6 | %   |  |
| NSW                | 39    | 23 | 3 | 11                     | 94.9 | 2 | 0                                             | 0 | 0 | 5.1 |  |
| Vic                | 29    | 17 | 1 | 11                     | _*   | 0 | 0                                             | 0 | 0 | _*  |  |
| Qld                | 15    | 11 | 1 | 3                      | _*   | 0 | 0                                             | 0 | 0 | _*  |  |
| SA                 | 13    | 6  | 1 | 5                      | _*   | 1 | 0                                             | 0 | 0 | _*  |  |
| WA                 | 18    | 14 | 2 | 2                      | _*   | 0 | 0                                             | 0 | 0 | _*  |  |
| Tas                | 7     | 3  | 1 | 2                      | _*   | 0 | 1                                             | 0 | 0 | _*  |  |
| NT                 | 3     | 1  | 0 | 1                      | _*   | 0 | 1                                             | 0 | 0 | _*  |  |
| ACT                | 5     | 1  | 0 | 4                      | _*   | 0 | 0                                             | 0 | 0 | _*  |  |
| Total              | 129   | 76 | 9 | 39                     | 96.1 | 3 | 2                                             | 0 | 0 | 3.9 |  |

#### Table D4: Multiple acquired resistance in Klebsiella aerogenes, by state and territory, AGAR, 2022

Multi-drug resistant = resistant to one or more agent in three or more antimicrobial categories

\* Not applicable, insufficient numbers (<30) to calculate

Note: Antimicrobial categories (agents) are aminoglycosides (gentamicin or tobramycin), antipseudomonal penicillins +  $\beta$ -lactamase inhibitor (piperacillin–tazobactam), carbapenems (meropenem), extended-spectrum cephalosporins (ceftriaxone or ceftazidime), fluoroquinolones (ciprofloxacin), and folate pathway inhibitors (trimethoprim–sulfamethoxazole).

#### Table D5: Multiple acquired resistance in Klebsiella oxytoca, by state and territory, AGAR, 2022

| State or  | Number of categories<br>(non- multidrug resistant) |     |    |    |       |   | Number of categories<br>(multidrug resistant) |   |   |   |     |  |  |
|-----------|----------------------------------------------------|-----|----|----|-------|---|-----------------------------------------------|---|---|---|-----|--|--|
| territory | Total                                              | 0   | 1  | 2  | %     | 3 | 4                                             | 5 | 6 | 7 | %   |  |  |
| NSW       | 85                                                 | 70  | 6  | 7  | 97.6  | 1 | 1                                             | 0 | 0 | 0 | 2.4 |  |  |
| Vic       | 78                                                 | 63  | 11 | 4  | 100.0 | 0 | 0                                             | 0 | 0 | 0 | 0.0 |  |  |
| Qld       | 30                                                 | 27  | 3  | 0  | 100.0 | 0 | 0                                             | 0 | 0 | 0 | 0.0 |  |  |
| SA        | 28                                                 | 25  | 2  | 1  | _*    | 0 | 0                                             | 0 | 0 | 0 | _*  |  |  |
| WA        | 43                                                 | 36  | 5  | 2  | 100.0 | 0 | 0                                             | 0 | 0 | 0 | 0.0 |  |  |
| Tas       | 16                                                 | 11  | 2  | 3  | _*    | 0 | 0                                             | 0 | 0 | 0 | _*  |  |  |
| NT        | 5                                                  | 2   | 0  | 3  | _*    | 0 | 0                                             | 0 | 0 | 0 | _*  |  |  |
| ACT       | 10                                                 | 8   | 1  | 1  | _*    | 0 | 0                                             | 0 | 0 | 0 | _*  |  |  |
| Total     | 295                                                | 242 | 30 | 21 | 99.3  | 1 | 1                                             | 0 | 0 | 0 | 0.7 |  |  |

Multi-drug resistant = resistant to one or more agent in three or more antimicrobial categories

\* Not applicable, insufficient numbers (<30) to calculate

Note: Antimicrobial categories (agents) are aminoglycosides (gentamicin or tobramycin), antipseudomonal penicillins +  $\beta$ -lactamase inhibitor (piperacillin–tazobactam), carbapenems (meropenem), extended-spectrum cephalosporins (ceftriaxone or ceftazidime), cephamycins (cefoxitin), fluoroquinolones (ciprofloxacin), and folate pathway inhibitors (trimethoprim–sulfamethoxazole).

### Table D6: Multiple acquired resistance in Morganella morganii, by state and territory, AGAR, 2022

| State or territory |       |    | umber of<br>n- multidr |   |      | Number of categories<br>(multidrug resistant) |   |   |   |   |     |
|--------------------|-------|----|------------------------|---|------|-----------------------------------------------|---|---|---|---|-----|
| terniory           | Total | 0  | 1                      | 2 | %    | 3                                             | 4 | 5 | 6 | 7 | %   |
| NSW                | 47    | 25 | 17                     | 2 | 93.6 | 1                                             | 2 | 0 | 0 | 0 | 6.4 |
| Vic                | 19    | 12 | 6                      | 1 | _*   | 0                                             | 0 | 0 | 0 | 0 | _*  |
| Qld                | 11    | 6  | 4                      | 1 | _*   | 0                                             | 0 | 0 | 0 | 0 | _*  |
| SA                 | 11    | 5  | 4                      | 1 | _*   | 1                                             | 0 | 0 | 0 | 0 | _*  |
| WA                 | 9     | 4  | 4                      | 1 | _*   | 0                                             | 0 | 0 | 0 | 0 | _*  |
| Tas                | 7     | 3  | 3                      | 0 | _*   | 1                                             | 0 | 0 | 0 | 0 | _*  |
| NT                 | 1     | 0  | 1                      | 0 | _*   | 0                                             | 0 | 0 | 0 | 0 | _*  |
| ACT                | 1     | 0  | 1                      | 0 | _*   | 0                                             | 0 | 0 | 0 | 0 | _*  |
| Total              | 106   | 55 | 40                     | 6 | 95.3 | 3                                             | 2 | 0 | 0 | 0 | 4.7 |

Multi-drug resistant = resistant to one or more agent in three or more antimicrobial categories

\* Not applicable, insufficient numbers (<30) to calculate

Note: Antimicrobial categories (agents) are aminoglycosides (gentamicin or tobramycin), antipseudomonal penicillins +  $\beta$ -lactamase inhibitor (piperacillin–tazobactam), carbapenems (meropenem), extended-spectrum cephalosporins (ceftriaxone or ceftazidime), cephamycins (cefoxitin), fluoroquinolones (ciprofloxacin), and folate pathway inhibitors (trimethoprim–sulfamethoxazole).

| State or  |       |     | Imber of<br>- multidi | •  |      |   |   |   | er of cate<br>drug resi |   |   |       |
|-----------|-------|-----|-----------------------|----|------|---|---|---|-------------------------|---|---|-------|
| territory | Total | 0   | 1                     | 2  | %    | 3 | 4 | 5 | 6                       | 7 | 8 | Total |
| NSW       | 113   | 84  | 12                    | 10 | 93.8 | 3 | 2 | 2 | 0                       | 0 | 0 | 6.2   |
| Vic       | 69    | 53  | 10                    | 4  | 97.1 | 1 | 1 | 0 | 0                       | 0 | 0 | 2.9   |
| Qld       | 42    | 36  | 4                     | 1  | 97.6 | 1 | 0 | 0 | 0                       | 0 | 0 | 2.4   |
| SA        | 31    | 23  | 3                     | 4  | 96.8 | 0 | 1 | 0 | 0                       | 0 | 0 | 3.2   |
| WA        | 48    | 37  | 4                     | 6  | 97.9 | 0 | 1 | 0 | 0                       | 0 | 0 | 2.1   |
| Tas       | 9     | 5   | 1                     | 3  | _*   | 0 | 0 | 0 | 0                       | 0 | 0 | _*    |
| NT        | 4     | 4   | 0                     | 0  | _*   | 0 | 0 | 0 | 0                       | 0 | 0 | _*    |
| ACT       | 6     | 5   | 1                     | 0  | _*   | 0 | 0 | 0 | 0                       | 0 | 0 | _*    |
| Total     | 322   | 247 | 35                    | 28 | 96.3 | 5 | 5 | 2 | 0                       | 0 | 0 | 3.7   |

Table D7: Multiple acquired resistance in *Proteus mirabilis*, by state and territory, AGAR, 2022

Multi-drug resistant = resistant to one or more agent in three or more antimicrobial categories

\* Not applicable, insufficient numbers (<30) to calculate

Note: Antimicrobial categories (agents) are aminoglycosides (gentamicin or tobramycin), antipseudomonal penicillins + β-lactamase inhibitor (piperacillin–tazobactam), carbapenems (meropenem), extended-spectrum cephalosporins (ceftriaxone or ceftazidime), cephamycins (cefoxitin), fluoroquinolones (ciprofloxacin), folate pathway inhibitors (trimethoprim–sulfamethoxazole), and penicillins (ampicillin).

**Table D8**: Multiple acquired resistance in Salmonella species (non-typhoidal), by state and territory, AGAR,2022

| State or  |       |    | lumber of<br>on-multidr |   |      | Number of categories<br>(multidrug resistant) |   |   |   |     |  |
|-----------|-------|----|-------------------------|---|------|-----------------------------------------------|---|---|---|-----|--|
| territory | Total | 0  | 1                       | 2 | %    | 3                                             | 4 | 5 | 6 | %   |  |
| NSW       | 21    | 16 | 3                       | 1 | _*   | 1                                             | 0 | 0 | 0 | _*  |  |
| Vic       | 16    | 11 | 3                       | 1 | _*   | 0                                             | 1 | 0 | 0 | _*  |  |
| Qld       | 16    | 16 | 0                       | 0 | _*   | 0                                             | 0 | 0 | 0 | _*  |  |
| SA        | 0     | 0  | 0                       | 0 | n/a  | 0                                             | 0 | 0 | 0 | n/a |  |
| WA        | 18    | 16 | 1                       | 0 | _*   | 0                                             | 1 | 0 | 0 | _*  |  |
| Tas       | 12    | 12 | 0                       | 0 | _*   | 0                                             | 0 | 0 | 0 | _*  |  |
| NT        | 10    | 9  | 1                       | 0 | _*   | 0                                             | 0 | 0 | 0 | _*  |  |
| ACT       | 3     | 2  | 1                       | 0 | _*   | 0                                             | 0 | 0 | 0 | _*  |  |
| Total     | 96    | 82 | 9                       | 2 | 96.9 | 1                                             | 2 | 0 | 0 | 3.1 |  |

Multi-drug resistant = resistant to one or more agent in three or more antimicrobial categories; n/a = not applicable (no isolates)

\* Not applicable (insufficient numbers)

Note: Antimicrobial categories (agents) are antipseudomonal penicillins +  $\beta$ -lactamase inhibitor (piperacillin-tazobactam), carbapenems (meropenem), extended-spectrum cephalosporins (ceftriaxone or ceftazidime), fluoroquinolones (ciprofloxacin), folate pathway inhibitors (trimethoprim-sulfamethoxazole), and penicillins (ampicillin)

Table D9: Multiple acquired resistance in Salmonella species (typhoidal), by state and territory, AGAR, 2022

| State or  |       |   | Number of<br>on-multidr |   |      |   | Number of categories<br>(multidrug resistant) |   |   |      |  |
|-----------|-------|---|-------------------------|---|------|---|-----------------------------------------------|---|---|------|--|
| territory | Total | 0 | 1                       | 2 | %    | 3 | 4                                             | 5 | 6 | %    |  |
| NSW       | 9     | 1 | 4                       | 0 | _*   | 3 | 0                                             | 1 | 0 | _*   |  |
| Vic       | 15    | 3 | 12                      | 0 | _*   | 0 | 0                                             | 0 | 0 | _*   |  |
| Qld       | 2     | 1 | 0                       | 0 | _*   | 1 | 0                                             | 0 | 0 | _*   |  |
| SA        | 1     | 0 | 1                       | 0 | _*   | 0 | 0                                             | 0 | 0 | _*   |  |
| WA        | 5     | 0 | 4                       | 0 | _*   | 1 | 0                                             | 0 | 0 | _*   |  |
| Tas       | 1     | 0 | 1                       | 0 | _*   | 0 | 0                                             | 0 | 0 | _*   |  |
| NT        | 1     | 0 | 1                       | 0 | _*   | 0 | 0                                             | 0 | 0 | _*   |  |
| ACT       | 3     | 0 | 2                       | 0 | _*   | 0 | 1                                             | 0 | 0 | _*   |  |
| Total     | 37    | 5 | 25                      | 0 | 81.1 | 5 | 1                                             | 1 | 0 | 18.9 |  |

Multi-drug resistant = resistant to one or more agent in three or more antimicrobial categories

\* Not applicable (insufficient numbers)

Note: Antimicrobial categories (agents) are antipseudomonal penicillins +  $\beta$ -lactamase inhibitor (piperacillin-tazobactam), carbapenems (meropenem), extended-spectrum cephalosporins (ceftriaxone or ceftazidime), fluoroquinolones (ciprofloxacin), folate pathway inhibitors (trimethoprim-sulfamethoxazole), and penicillins (ampicillin).

### Table D10: Multiple acquired resistance in Serratia marcescens, by state and territory, AGAR, 2022

| State or territory |       |    | umber of<br>n-multidr |    |       | Number of categories<br>(multidrug resistant) |   |   |   |   |     |
|--------------------|-------|----|-----------------------|----|-------|-----------------------------------------------|---|---|---|---|-----|
| terntory           | Total | 0  | 1                     | 2  | %     | 3                                             | 4 | 5 | 6 | 7 | %   |
| NSW                | 95    | 22 | 53                    | 15 | 94.7  | 3                                             | 2 | 0 | 0 | 0 | 5.3 |
| Vic                | 52    | 21 | 20                    | 7  | 92.3  | 2                                             | 2 | 0 | 0 | 0 | 7.7 |
| Qld                | 36    | 11 | 23                    | 2  | 100.0 | 0                                             | 0 | 0 | 0 | 0 | 0.0 |
| SA                 | 7     | 1  | 6                     | 0  | _*    | 0                                             | 0 | 0 | 0 | 0 | _*  |
| WA                 | 4     | 2  | 1                     | 1  | _*    | 0                                             | 0 | 0 | 0 | 0 | _*  |
| Tas                | 8     | 2  | 5                     | 0  | _*    | 0                                             | 1 | 0 | 0 | 0 | _*  |
| NT                 | 0     | 0  | 0                     | 0  | n/a   | 0                                             | 0 | 0 | 0 | 0 | n/a |
| ACT                | 10    | 5  | 5                     | 0  | _*    | 0                                             | 0 | 0 | 0 | 0 | _*  |
| Total              | 212   | 64 | 113                   | 25 | 95.3  | 5                                             | 5 | 0 | 0 | 0 | 4.7 |

Multi-drug resistant = resistant to one or more agent in three or more antimicrobial categories; n/a = not applicable (no isolates)

\* Not applicable (insufficient numbers)

Note: Antimicrobial categories (agents) are aminoglycosides (gentamicin or tobramycin), antipseudomonal penicillins +  $\beta$ -lactamase inhibitor (piperacillin–tazobactam), carbapenems (meropenem), extended-spectrum cephalosporins (ceftriaxone or ceftazidime), cephamycins (cefoxitin), fluoroquinolones (ciprofloxacin), folate pathway inhibitors (trimethoprim–sulfamethoxazole).