Prevalence of Antimicrobial Resistances in Common Pathogenic Enterobacteriaceae in Australia, 2006: Report from the Australian Group on Antimicrobial Resistance

Department of Heaouth Metropolitan

Royal Perth

John Turnidge¹, Jan Bell¹, Julie Pearson², Tom Gottlieb³, David Mitchell⁴, and the Australian Group on Antimicrobial Resistance

¹Department of Microbiology and Infectious Diseases, Women's and Children's Hospital, South Australia, ²Department of Microbiology and Infectious Diseases, Royal Perth Hospital, PathWest Laboratory Medicine, Western Australia,

3Department of Microbiology and Infectious Diseases, Concord Hospital, New South Wales, ⁴Centre for Infectious Diseases and Microbiology, Westmead Hospital, New South Wales

Introduction

E. coli and Klebsiella species are common causes of both hospital and community-acquired infection. Both of these species have a tendency to accumulate resistances to different antibiotic classes, especially β-lactams which are considered the drugs of choice. Particularly problematic are strains with extendedspectrum β-lactamases (ESBLs), which hydrolyse third- and fourth generation cephalosporins, used for more serious infection requiring treatment in hospital. Such strains are frequently resistant to other useful including aminoglycosides, antibiotics, fluoroguinolones and co-trimoxazole. Recently it has become apparent that the genes encoding ESBLs can spread to other enteric Gram-negative species, especially *Enterobacter* species which are important hospital-associated pathogens, and act as an unrecognised reservoir for these genes. Last line antibiotics such as carbapenems are often required for treatment of infections caused by ESBL-producing strains.

Methods

Thirty-one laboratories around Australia collected up to 75 clinical isolates of pathogenic Gram-negative bacteria (25 *E. coli*, 25 *Klebsiella* species, 25 *Enterobacter* species) from hospital and community patients.

Identification: Isolates were identified to species level by one of the following methods: API 20NE, API 20E, Vitek or Vitek 2, Phoenix, agar replication, Microscan, chromogenic agar, or conventional biochemical tests.

Susceptibility testing: Antimicrobial susceptibility tests were performed using the Vitek 2 AST-N044 card. CLSI (2009) criteria were used for interpretations for all antimicrobials except tigecycline where FDA guidelines (2005) were used. An ESBL phenotype was defined as ceftazidime or ceftriaxone MIC >1mg/L for *E. coli* and *Klebsiella* species and cefepime MIC >1mg/L for *Enterobacter* species. A selection of isolates with ESBL, plasmid-borne AmpC and carbapenemase phenotypes were examined by molecular techniques for the presence of known resistance genes. TaqMan probes were used to determine CTX-M groups, and real-time PCR for all known metallo-β-lactamases, KPC, TEM, SHV and plasmid-borne AmpC groups.

To ensure institutional anonymity data from New South Wales (NSW) and the Australian Capital Territory (ACT); Tasmania (Tas) and Victoria (Vic); and Queensland (Qld) and the Northern Territory (NT) have been combined.

Results

Table 1 Escherichia coli

Antibiotic	Cat*	NSW/ACT (n=225)	QLD/NT (n=161)	SA (n=99)	VIC/TAS (n=196)	WA (n=100)	Australia (n=781)
Ampicillin	%R	52.0%	44.1%	39.4%	51.0%	49.0%	48.1%
Amoxycillin-clavulanate	%l	9.8%	12.4%	7.1%	14.3%	15.0%	11.8%
	%R	6.2%	3.7%	4.0%	5.1%	7.0%	5.2%
Piperacillin-tazobactam	%R	0.0%	0.6%	0.0%	0.0%	2.0%	0.4%
Cefazolin	%l	1.3%	3.1%	7.1%	3.1%	4.0%	3.2%
	%R	7.6%	6.2%	6.1%	6.6%	10.0%	7.2%
Ceftriaxone	%NS	3.6%	1.2%	2.0%	2.0%	1.0%	2.2%
Ceftazidime	%NS	1.8%	0.6%	0.0%	1.5%	2.0%	1.3%
Cefepime	%NS	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Meropenem	%NS	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Ciprofloxacin	%NS	6.7%	2.5%	6.1%	4.6%	4.0%	4.9%
Gentamicin	%R	6.7%	2.5%	7.1%	4.6%	1.0%	4.6%
Co-trimoxazole	%R	18.7%	13.0%	14.1%	14.8%	14.0%	15.4%
Tigecycline	%R	0.4%	0.0%	0.0%	0.0%	0.0%	0.1%

Table 2 Klebsiella species

Antibiotic	Cat*	NSW/ACT (n=218)	QLD/NT (n=155)	SA (n=82)	VIC/TAS (n=184)	WA (n=98)	Australia (737)
Amoxycillin-clavulanate	%l	1.8%	7.1%	1.2%	3.8%	2.0%	3.4%
	%R	6.0%	1.9%	2.4%	2.7%	3.1%	3.5%
Piperacillin-tazobactam	%R	3.2%	3.2%	1.2%	1.6%	2.0%	2.4%
Cefazolin	%l	2.3%	2.6%	6.1%	2.7%	9.2%	3.8%
	%R	13.8%	9.0%	8.5%	12.5%	13.3%	11.8%
Ceftriaxone	%NS	5.5%	2.6%	0.0%	3.8%	0.0%	3.1%
Ceftazidime	%NS	5.5%	1.3%	2.4%	2.7%	1.0%	3.0%
Cefepime	%NS	2.3%	0.0%	0.0%	1.1%	0.0%	0.9%
Meropenem	%NS	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Ciprofloxacin	%NS	4.1%	3.2%	2.4%	1.6%	1.0%	2.7%
Gentamicin	%R	3.2%	3.2%	1.2%	3.3%	1.0%	2.7%
Co-trimoxazole	%R	4.1%	7.1%	7.3%	2.7%	2.0%	4.5%
Tigecycline	%R	4.1%	3.2%	1.2%	1.1%	0.0%	2.3%

Table 3 Enterobacter species

Antibiotic		NSW/ACT (n=224)	NSW/ACT (n=224) QLD/NT (n=155)		VIC/TAS (n=201)	WA (n=99)	Australia (n=756)	
Piperacillin-tazobactam	%R	3.1%	6.5%	6.5%	6.5%	1.0%	4.8%	
Ceftriaxone	%NS	29.5%	18.1%	28.6%	30.3%	10.1%	24.7%	
Ceftazidime	%NS	33.9%	20.6%	32.5%	32.3%	13.1%	27.9%	
Cefepime	%NS	0.0%	0.0%	3.9%	1.0%	0.0%	0.7%	
Meropenem	%NS	0.0%	0.6%	1.3%	0.0%	0.0%	0.3%	
Ciprofloxacin	%NS	5.4%	1.3%	3.9%	2.5%	3.0%	3.3%	
Gentamicin	%R	11.6%	6.5%	7.8%	3.0%	0.0%	6.3%	
Co-trimoxazole	%R	15.6%	12.3%	10.4%	7.0%	1.0%	10.2%	
Tigecycline	%R	1.3%	4.0%	2.6%	5.5%	1.0%	3.0%	

^{*}Category: R = resistant, I = intermediate, NS = not susceptible (intermediate + resistant)

Table 4 Multi-resistance

Species		Non-multi-resistant					Multi-resistant					
No. resistant	0	1	2	3	%	4	5	6	7	8	9	%
E. coli ¹	379	178	115	56	93.2	31	10	5	5	2		6.8
Klebsiella ²	587	75	21	27	96.3	13	6	5	1	1	1	3.7
Enterobacter ³	495	45	30	138	93.6	25	15	7	1			6.4

^{1.} Antibiotics included: ampicillin, amoxycillin-clavulanate, piperacillin-tazobactam, cefazolin, ceftriaxone, ceftazidime, cefepime, meropenem, ciprofloxacin, gentamicin, co-trimoxazole, tigecycline
2. Antibiotics include: amoxycillin-clavulanate, piperacillin-tazobactam, cefazolin, ceftriaxone, ceftazidime, cefepime, meropenem, ciprofloxacin, gentamicin, co-trimoxazole, tigecycline

Results

Seven hundred and eighty one *E. coli*, 737 Klebsiella species (70% *K. pneumoniae*, 27% *K. oxytoca*, 3% other species or not speciated) and 756 *Enterobacter* species (66% *E. cloacae*, 31% *E. aerogenes* and 3% other species or not speciated) were collected.

E. coli: Acquired resistance to ampicillin was common (50%), and clinically significant percentages of intermediate susceptibility and resistance (>10%) were observed to amoxycillin-clavulanate, cefazolin, and co-trimoxazole (Table 1). 6.8% of *E. coli* were multi-resistant (Table 4).

Klebsiella spp: Acquired resistance was seen to cotrimoxazole (4.5%). 3.7% of *Klebsiella* species were multi-resistant (Table 4).

Enterobacter species: Acquired resistance was seen to ceftriaxone, ceftazidime, trimethoprim and cotrimoxazole. Carbapenem resistance was detected in two (0.3%) *Enterobacter* species. 6.4% of *Enterobacter* species were multi-resistant (Table 4).

ESBLs: 3% of *E. coli*, 6% of *Klebsiella* species and 9% of *Enterobacter* species had an ESBL phenotype. Co-resistance to ciprofloxacin, gentamicin and/or co-trimoxazole was common in isolates presumptively harbouring ESBLs.

CTX-M-1, -2 and -9 types were detected in several institutions around Australia as were plasmid-borne AmpC enzymes (CMY, DHA, EBC and FOX). TEM and SHV ESBLs were widespread.

Conclusions

Although resistance and multi-resistance is common amongst the organisms tested, resistance to third-generation cephalosporins remains uncommon in *E. coli* and *Klebsiella* species, and resistance to carbapenems is relatively rare. Australia may be controlling its resistance rates to third-generation cephalosporins by reducing reliance on them in hospital practice, but there is molecular evidence of increasing rates of strains harbouring CTX-M enzymes, which have become a problem in the community in other countries. Rates of resistance to fluoroquinolones appear to be slowly rising.

Acknowledgements

AGAR has been supported by the Department of Health and Ageing since 2001.

^{3.} Antibiotics included: piperacillin-tazobactam, ceftraxone, ceftazidime, cefepime, ciprofloxacin, gentamicin, co-trimoxazole, tigecycline